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Abstract

Identifying the file type (TXT, EXE, JPEG, etc.) is important for computer security applications such as com-
puter forensics, steganalysis, and antivirus programs. The common approach for this is to use file exten-
sions, magic numbers, or other header information. However, these are susceptible to tampering or cor-
ruption; for instance, the file extension can be easily spoofed and the magic numbers can be obfuscated. 
A more reliable approach may be to analyze the file content instead of using only the tip of the information 
(metadata). This paper proposes two methods based on the file content. First, we use the cosine distance 
as a similarity metric when comparing the file content rather than the Mahalanobis distance that is popular 
and has been used by the other related approaches. The cosine similarity (unlike the Mahalanobis distance) 
retains the classification accuracy on a small number of highly frequent byte patterns which leads to a 
smaller model size and faster detection rate. Second, we decompose the identification procedure into two 
steps by taking the divide and conquer: in the first step, the similar files in terms of byte pattern frequencies 
are grouped into several clusters. In the next step, the cluster which contains different file types is fed to the 
neural network in order for finer classification. The experiments showed that the classification followed by 
clustering leads to higher accuracies.
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1. Introduction 

File type (e.g., JPG, DOC, and TXT) identification by 
computer operating systems is vital in order to manage 
and process files. For instance, programs usually inter-
pret files as a stream of bytes, and thus it is required to 
identify file types within the file system. Approaches to 
this problem vary depending on the operating system, 
and include the file extension (combining the file type 
with the name using period), magic number (keeping 
the file type information in file header), and storing the 
file type in the file system. 

Many security applications require identification of file 
types in order to work efficiently. For example, email 
attachment filtering may require blocking types of 
inbound attachments that may contain malicious con-
tents. Virus scanners may be configured to skip some 
file extensions; in Norton Antivirus 2008, for example, 
there is an exclusion option to specify file types that 
will be skipped by the virus scan [1]. Some applica-
tions raise alerts before opening unrecognized (suspi-
cious) file extensions; for instance, Windows Media 
Player raises an alert when the user tries to open a file 

with an unrecognized extension. Some steganalysis 
programs also rely on file type detection; for example,  
Stegdetect [2], which detects steganographic contents 
in images, uses the libmagic1 package [3] and magic 
numbers to determine the file type. 

Because the current solutions that rely on metadata 
information are susceptible to tampering or corruption, 
they cannot be trusted to securely identify file types. For 
example, file extensions can be renamed or file headers 
can be encoded in order to obfuscate the file type infor-
mation. In the presence of adversaries, analyzing the 
file content may be more reliable means to identify file 
types. The file contents consist of bytes and 1 byte has 
256 unique values, i.e. 0–255; these are denoted as byte 
patterns in this paper. The total number of occurrences 
of each byte pattern in a file is called the byte frequency. 
Solutions such as fileprint [4] and fingerprint [5] that ana-
lyze the file content usually compute the byte frequency 
vector and learn the distinguishable byte patterns of file 
types. But such schemes fail to achieve high classifica-
tion accuracy. 

This paper proposes two methods to improve the per-
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formance of content-based file type identification. The 
first one is to use the cosine similarity for byte frequency 
comparison. The cosine similarity ensures classification 
accuracy when using only certain percentage of high-
frequency byte patterns; this results in a smaller model 
size and faster detection rate. Using high-frequency 
byte patterns can effectively eliminate nonrepresenta-
tive patterns that rarely occur in file types. Thus, it 
can improve the classification accuracy as well. We 
compare the cosine similarity with the Mahalanobis 
distance (popular metric used by many schemes such 
as Fileprint [4], PAYL [6-8]). 

The second one is to use clustering ahead of file type 
identification: the divide-and-conquer approach. We 
group similar files in terms of their byte pattern fre-
quencies irrespective of their file types. The grouping 
is based on the clustering technique. Then we perform 
classification of the resulting clusters that are mixed 
up with different types of files. In this paper, we use 
a neural network as the classifier. We show that the 
divide-and-conquer approach improves the classifica-
tion accuracy over the classification algorithm used 
without clustering. 

The rest of the paper is organized as follows. Section 2 
presents the related works. Section 3 describes the two 
proposed methods. Section 4 discusses the experimental 
details and the empirical results of the proposed meth-
ods, followed by the conclusion in section 5. 

2.  Related Works 

This section introduces previous works on file type 
identification, some of which are commonly used in 
operating systems where the file type information is 
explicitly written in the file header or name. Other 
techniques analyze the file content in order to identify 
the file type. 

2.1  Using File Headers 

The most common and simplest means to identify the 
file type is to examine the file’s extension [9], but this 
can be easily spoofed by users with malicious intent. 
Novices can also unintentionally change the file exten-
sion while renaming the file. Malwares can also be 
easily hidden by using file extensions that are skipped 
by virus scanners. 

Another method to identify the file type is to examine 
the magic numbers in the file [10]. For example, GIF files 
begin with an ASCII representation of GIF87a or GIF89a 
depending on the standard. ZIP files always have the 
magic number PK at the beginning of the file; however, 
because only binary files have magic numbers, this is 

not applicable to text files. As with the file extension, it 
can also be easily spoofed. For instance, malcodes can 
be hidden using code obfuscation and alphanumeric 
encoding [11-15]. 

Li et al. [16] categorize a file header fragment based 
on its contents by using the support vector classifier 
algorithm. They use an enhanced string kernel (ESK) 
to discover byte-level patterns in the file header frag-
ment and use an extended suffix array data structure to 
efficiently store and manipulate the feature map. They 
use five file types, i.e., MS Word, MS Excel, JPG, C++, 
and PDF. The classification accuracy of each file type 
varies from 61% to 100% depending on the minimum 
sequence length of the suffix within the sliding window. 

2.2  Using File Contents 

This section presents variety of content-based file type 
identification schemes. Since the first two schemes are 
closet to our divide-and-conquer approach, they are 
also applied to our dataset in order to compare their 
classification accuracies with our approach. 

Li et al. [4] identify file types using n-gram analysis. 
They calculate 1-gram frequency distribution of files 
and build three different models of each file type: single-
centroid (one model of each file type), multicentroid 
(multiple models of each file type), and exemplar files 
(the set of files of each file type) as centroid. They refer 
to these as the 'fileprint'. In single-centroid and multi-
centroid models, they calculate the mean and standard 
deviation of the 1-gram frequency distribution of files, 
and use the Mahalanobis distance to compare these 
models with the 1-gram distribution of the given file 
and find the closest model. In the exemplar file model, 
they compare the 1-gram distribution of the exemplar 
file with that of the given file (no variance is computed), 
and the Manhattan distance is used instead of the Maha-
lanobis distance. Their solution cannot identify files that 
have similar byte frequency distributions such as MS 
Office file formats (e.g., Word and Excel), but it treats 
them as a single group or abstract file type. 

Harris [14] used an artificial neural network to identify 
file types. The file is divided into blocks of 512 bytes and 
only the first 10 blocks are used for file type identifica-
tion. Two features are extracted from each block, i.e., 
raw filtering and character code frequency. Raw filter-
ing takes each byte as an input for one neuron of the 
neural network. However, the character code frequency 
counts the number of occurrences of each character 
code in the four blocks and takes the frequency of the 
character as an input for the neurons. It is assumed that 
raw filtering is useful for files for which byte patterns 
occur at regular intervals; however, the character code 

Ahmed I, et al.: Content-based File-type Identification



467IETE TECHNICAL REVIEW  |  VOL 27  |  ISSUE 6  |  NOV-DEC 2010

frequency is useful for files which have irregular byte 
pattern occurrences. He only used image files, i.e., JPG, 
PNG, TIF, GIF, and BMP, as a sample set and reported 
a detection rate ranging from 1% (GIF) to 50% (TIF) 
for raw filtering and from 0% (GIF) to 60% (TIF) for 
character code frequency. 

McDaniel and Heydari [5] introduced three algorithms 
to identify file types by analyzing file content. In the 
byte frequency analysis (BFA) algorithm, they calculate 
the byte frequency distributions of different files and 
generate the 'fingerprint' of each file type by averaging 
the respective byte frequency distributions. They also 
calculate the correlation strength as another characteriz-
ing factor. They take the difference between given byte 
values in different files. As the difference decreases, the 
correlation strength approaches to 1 and vice versa. 
They use the byte frequency cross-correlation algorithm 
to find the correlation between all the byte pairs. They 
calculate the average frequency between all the byte 
pairs and the correlation strength, in a similar manner to 
the BFA algorithm. In the file header/trailer algorithm, 
the file headers/trailers are byte patterns that appear at 
a fixed location at the beginning/end of the file. They 
maintain an array of 256 entries for each location and the 
array entry corresponding to the byte value is initialized 
with the correlation strength of 1. They construct the 
fingerprint by averaging the correlation strength of each 
file and use these algorithms to compare the file with 
all the generated fingerprints and identify its file type. 

Martin and Nahid [17,18] proposed the 'Oscar' method 
for identifying types of file fragments. They build 
single-centroid fileprints [4] but use the quadratic 
distance metric and the 1-norm as distance metric to 
compare the centroid with the byte frequency distribu-
tion of the file. Although Oscar identifies any file type, 
it is optimized for JPEG files. They introduce the rate 
of change (RoC) as the new metric which is defined as 
the difference between two consecutive byte values 
considering the ordering information of bytes. They 
reported 99.2% detection rate of JPEG files, which is 
nearly perfect. Such detection rate is possible for JPEG 
files, because the JPEG format uses 0xFF as an escape 
character for all metadata tags, and an extra 0x00 is 
added after every 0xFF byte in the body of the file in 
order to avoid ambiguity. Thus, a regular, unique, and 
exploitable pattern, i.e., 0xFF00 does exist in JPEG file, 
which has a very high RoC. However, the technique 
does not improve the classification accuracy of file types 
other than JPEG. 

Amirani et al. [19] used the hierarchical feature extrac-
tion method to more effectively exploit the byte fre-
quency distributions of files for file type identification. 
They believed that the multiplicity of features reduces 

the speed and accuracy for file type identification. Thus, 
they utilize principal component analysis and an auto-
associative neural network to reduce the 256 features 
of byte patterns to certain smaller number (where the 
detection error is negligible). After feature extraction, 
they use three-layer multilayer perceptron (MLP) for 
detecting the file types. They used the DOC, PDF, EXE, 
JPG, HTM, and GIF file types for the experiments, each 
consisting of 30 test data points, and they reported an 
accuracy of 98.33%. However, the choice of file types 
used in their experiments may have been biased. That is, 
although their experimental results show high accuracy 
in distinguishing different characteristics of file types 
such as HTML and EXE, they didn’t try to distinguish 
similar characteristics of file types, e.g., TXT and HTML 
that only contain ASCII printable characters and can be 
confused during detection. 

Moody and Erbacher [20] aimed to identify the embed-
ded data types in files. Files of type DOC and XLS can 
import a variety of objects (e.g., image files); thus these 
whole files do not represent a single type. They vary 
the window sizing to process a small chunk of file data. 
They gathered a variety of statistical characteristics of 
byte values in each window, including the average, 
standard deviation, and kurtosis and used them to 
identify the type of chunk. They reported 74.2% detec-
tion accuracy, which includes the high detection rate 
of text-type files, i.e., CSV (100%), HTML (100%), and 
TXT (80%). 

Hall and Davis [21] determine file types using entropy 
and compressibility measurements. They use sliding 
window and calculate the entropy and compressibility 
value of each window. The values of each file type are 
used to obtain the average and standard deviation, and 
these are compared with the test file by using point-
by-point delta and Pearson’s rank order correlation to 
identify file types. 

Veenman [22] extracts three features from the file con-
tent: (1) the byte frequency distribution, (2) the entropy 
derived from the byte frequency distributions of files, 
and (3) the algorithmic or Kolmogorov complexity 
that exploits the substring order [23]. The Fisher linear 
discriminant is applied to these features in order to 
identify the file type. 

Calhoun and Coles [24] extended Veenman’s work by 
building classification models (based on statistics such 
as the ASCII frequency, entropy, etc.) and applying 
the linear discriminant to identify file types. They also 
argued that files of the same type probably have longer 
common substrings than those of different types. Our 
approach also uses the byte frequency distribution 
as feature and linear discriminant analysis for clas-
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sification. However, the main difference between our 
method and Veenman’s is the means by which we build 
the classification model for each file type. Veenman 
computes a single discriminant function using all the 
sample files for each file type. However, our approach 
combines similar byte frequency files into groups by 
using clustering, irrespective of their file types, and 
computes the linear discriminant function for each file 
type in each group. Hence, multiple functions can be 
computed for each file type. 

This paper is an extension of our preliminary work [25]. 
In this paper, we extend our work by using a neural 
network to improve the classification accuracy of our 
proposed method. We also present its comparison with 
Harris’s approach (also based on a neural network). The 
comparison substantiates our claim that file grouping 
irrespective of the file type improves the classification 
accuracy for a given classification algorithm. 

3.  Proposed Methods 

3.1  Cosine Similarity and High-Frequency Byte 
Patterns 

The first approach we suggest in this paper is to use the 
cosine similarity for vector comparison. It retains the clas-
sification accuracy when only using certain percentage of 
high-frequency byte patterns. Thus, it results in a smaller 
model size and a faster detection rate. Moreover, we con-
jecture that byte patterns that rarely occur in a file type do 
not represent its normal patterns. If they are present in the 
representative model, they can degrade the classification 
accuracy. In that case, using a subset of high-frequency 
byte patterns is an effective means to eliminate them and 
improve the classification accuracy as well. 

3.1.1 Cosine Similarity 

If x is a byte frequency vector of a test file and y  is the 
representative model vector of the file type (obtained 
by averaging the byte frequency distributions of the 
file type’s sample files), then the cosine similarity is 
defined as 

c
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When the value is 1, the angle between x and y  is 0; thus 
x and y are the same except for the magnitude. When it is 
0, the angle is 90°, which means that they are dissimilar. 

To prove the superiority of the cosine similarity, we 
compare it with the well-known measure, based on the 
Mahalanobis distance [26]. A simplified Mahalanobis 
distance [4] is defined as follows: 
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where y and   are the respective mean value and stan-
dard deviation of the byte frequency distributions of the 
sample files used to build the representative file type. 

The cosine similarity is different from the simplified 
Mahalanobis distance, in that it puts more emphasis on 
inherent characteristics of file types (angle between two 
types of files) than magnitude (i.e., file size). Therefore, 
normalization for sizes of files is not necessary unlike 
the Mahalanobis distance. 

3.1.2  Selecting a Subset of High-frequency Byte Patterns 

We obtain the number of subsets of file type’s high-
frequency byte patterns via the following three steps: (1) 
we average the byte frequency distributions of each file 
type’s files in order to ensure that the usual frequency of 
byte patterns is present; (2) the byte patterns are sorted 
in a descending order with respect to their frequencies, 
and (3) starting from the head of the sorted list, we extract 
the number of subsets containing different percentages 
of high-frequency byte patterns where i i i iS S S S1 1if+ +⊆ <
and here Si represents the subset i of a file type. For the 
same percentage of high-frequency byte patterns, it is 
found that different file types may have different subsets 
of byte patterns. 

3.2  Divide and Conquer 

The other approach proposed in this paper consists of 
two steps. It first groups the files using clustering and 
then later (at second step) applies classification to the 
group which is heterogeneous in terms of file types of 
the group members. We group files without considering 
their file types. 

The motivation behind this approach is that the multi-
centroid modeling technique (by Li et al. [4]) groups files 
with respect to their file types and builds multiple mod-
els for each file type. Thus, similar models of different 
file types can be built if files of different types can have 
similar byte frequency distributions, and therefore, file 
types can be confused; this is an inherent problem with 
their scheme (refer to section 4.2.2 for details). 

3.2.1 Clustering

Clustering is an exploratory statistical procedure to 
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naturally group data into different clusters. At this 
stage, we do not consider the file type. Thus, clustering 
divides files of varying types (in the sample space) into 
a few clusters, each of which contain files with similar 
byte frequency patterns. Each cluster can have files of 
one or many different types. For instance, Figure 1(b) 
illustrates clustering where DOC, TXT, and ASP file types 
with similar byte frequency distributions are grouped 
together into three clusters.

3.2.2  Classification

After clustering, a classification algorithm is applied 
to a cluster that has files of multiple types in order to 
identify each type. For instance, Figure 1(c) illustrates 
that the classification algorithm draws margins among 
file types to separate them for clusters having files of 
multiple types.

This paper uses a neural network (NN) as a classification 
algorithm, which is popular and well-known in pattern 
recognition [27]. We use a MLP neural network that has 
input, output, and hidden nodes (refer to Figure 2). Hid-
den nodes are intermediate nodes that are not input or 
output nodes. There are 256 input nodes, each represent-
ing one unique byte pattern, for which its frequency is 
passed as an input value. There is only a single hidden 
layer in the neural network. The n numbers of hidden 
nodes are obtained on a hit-and-trial basis. The number 
of output nodes is the m types of files in a cluster. For 
instance, the NN has two output nodes for the cluster 
having ASP and TXT file types in Figure 1(c).

3.2.3  Type Identification Process of a File

Figure 3 describes the file type identification of the pro-
posed system when a new file of an unknown type enters 
into the system. At first, the relative byte frequencies of 
the files are computed; then, the file is assigned to the 
cluster with the most similar byte pattern frequencies. 
If the assigned cluster represents only one file type, the 
same type is assigned to the file; otherwise a classification 

method is used to identify the exact file type. Misclas-
sification can occur during both steps, i.e. clustering and 
classification. During clustering, if a test file’s type does 
not match any type of the assigned cluster, it is said to 
have been misclassified. For example, if file f of type X is 
assigned to cluster Y but this cluster does not have type 
X, then file f is considered to have been misclassified.

If not misclassified but assigned to the cluster composed 
of multiple file types, it is further fed to the classifier.

4.  Experiments

4.1  Dataset

We used 10 file types (JPG, HTML, GIF, EXE, MP3, PDF, 
TXT, DOC, XLS, and ASP) each of having 200 files (refer 
to Table 1), and hence, 2000 files in all. These file types 
were chosen because of their popularity and the fact that 
they cover a broad range of file contents including binary, 
text, and compressed files. Fifty percent of the files were 
used for the training dataset to build representative 
models of file types and the remaining 50% were used 
for the test dataset to test the classification accuracy of 
the identification schemes.

The file type represents how the data is encoded in a file. 
However, the implementation of the encoding schemes 

a) Different types of files b) After clustering c) After classification
Figure 1: Schematic illustration of file type classification followed by clustering.

Table 1: Details of the dataset used for experiments
File type Quantity Average size 

(Kilo bytes)
Minimum 

size (Bytes)
Maximum size 

(Kilo bytes)
ASP 200 3.52 49 37
DOC 200 306.44 219 7,255
EXE 200 522.71 882 35,777
GIF 200 3.24 64 762
HTML 200 11.59 117 573
JPG 200 1,208.27 21,815 7,267
MP3 200 6,027.76 235 30,243
PDF 200 1,501.12 219 32,592
TXT 200 269.03 16 69,677
XLS 200 215.98 80 9,892

Ahmed I, et al.: Content-based File-type Identification



470 IETE TECHNICAL REVIEW  |  VOL 27  |  ISSUE 6  |  NOV-DEC 2010

might slightly differ across software. Thus, we collected 
sample files from different sources in order to ensure that 
a file type’s sample files were not generated by a single 
source. Thus, executable files were mostly obtained from 
the bin and system32 folders from the Linux and Windows 
XP operating systems, respectively. Moreover, other 
files were collected from the internet using a general 
search on Google. For example, we search for .txt files 
using option filetype:txt. Image files such as GIF and JPG 
were also obtained from photo-sharing websites such 
as Picassa of Google, Flickr, etc. MP3 files were collected 
from different random sources mostly from publically 
available FTP servers for movies and personal comput-
ers. In short, such a random collection of files can be 
considered an unbiased and representative sample of 
the given file types.

4.2  Results on the Cosine Similarity and High-
Frequency Byte Patterns

4.2.1  Experimental Settings

We built multiple representative models of each file 

type using a number of different subsets of the file 
type’s high-frequency byte patterns. The two modeling 
techniques, single-centroid and multicentroid, are used 
for experimentation.

For the single-centroid modeling technique, we first 
computed the byte frequency distribution of each file and 
divided each byte pattern frequency by the file size; then 
we considered each byte pattern’s relative frequency as a 
variable, and computed its mean and standard deviation 
for each file type. For the multicentroid model, we use 
the k-means algorithm to group similar byte frequency 
files with respect to their file types. We chose a random 
value of k (3) as Li et al. [4] have reported similar results 
for different values of k. Thus, k multiple models were 
built for each file type. Each model contained a mean 
and standard deviation that were computed in a similar 
manner to the single-centroid model. We adopted Li et 
al.’s work because they use the Mahalanobis distance 
as a comparison metric and their single-centroid model 
is also used by other methods [17-22]. Moreover, their 
multicentroid model is comparable to our divide-and-
conquer approach.

We use the simplified Mahalanobis distance formula 
and the cosine similarity to compare the test file’s byte 
frequency distributions with the models. The aim is 
to find the classification accuracy of both comparison 
metrics for different percentages of high-frequency byte 
patterns (refer to the subsequent section). The accuracy 
(%) is calculated using the following equation:

Accuracy(%) = 
(Total no. of files - misclassified files)

    
Total no. of files  (3)

4.2.2  Analysis of Empirical Results

Figure 4 shows the average classification accuracy of the 
Mahalanobis distance and the cosine similarity (refer to 
the appendix for the individual file-type comparison). 
We notice that the cosine similarity retains its clas-Figure 2: Structure of the MLP neural network.

Figure 3: Identifying a test file using the divide-and-conquer approach.
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sification accuracy when using different percentages 
(10–100%) of byte patterns (high-frequency). The same 
results are obtained for most of the given file types; for 
the cosine similarity, the classification accuracy remains 
the same or improves as the number of byte patterns in 
the model decreases. However, the classification accu-
racy is degraded for the Mahalanobis distance.

It is also noticed in Figure 4 that the multicentroid model 
shows better accuracy than the single-centroid one. 
However, the average classification accuracy for Li et al.’s 
modeling technique is less than 80%, which is relatively 
low and may be unsatisfactory for many applications. In 
order to identify the cause of this, we analyzed the byte 
frequency distribution of the file types in the dataset. 
The following two difficulties were found.

1.  Byte frequency distributions of different file types can 
be similar. That is, they can have similar graphical 
representations of byte frequency distributions (see 
Figure 5 (a) and (b)). For instance, the text files such 
as ASP and HTML show this characteristic as they 
contain hypertext markup language.

2.  Byte frequency distributions from a same file type 
can be different. That is, the files of the same type 
can have different graphical representations of  
byte-frequency distributions (see Figure 5 (c) and 
(d)). For instance, compound files such as DOC and 
XLS files can embed different types of files (such as 
image files, etc.) in a single file.

A robust solution for file-type identification should cope 
with these difficulties. However, the single- and multi-

Figure 4: Average classification accuracy of single-centroid 
(SC) and multicentroid (MC) models for the cosine similarity 
(CS) and Mahalanobis distance (MD) using 10 file types.

  
ASP HTML 

  
DOC DOC 

 Figure 5: (a) and (b) show that the ASP and HTML file types can have similar byte frequency patterns; (c) and (d) show that 
two DOC files can have different byte frequency patterns (the x- and y-axes represent the byte patterns and the relative byte 
frequency, respectively).
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centroid modeling techniques of Li et al. do not consider 
them and thus, they fail to achieve high classification 
accuracy. The single-centroid modeling technique aver-
ages the byte frequency distribution of a file type’s files 
and builds a single representative model for each file 
type. Thus, it cannot yield an accurate representative 
model if the file type has more than one normal byte 
frequency distribution (see Figure 6). The multicentroid 
modeling technique groups files with respect to their 
file types and builds multiple models for each file type. 
Thus, it can build similar models of different file types 
if files of different types can have similar byte frequency 
distributions,

and therefore it can confuse file types (see Figure 7).  
Table 2 shows the average percentage of file types that 
are confused with other types, as noted during the 
experiments.

Figure 8 shows the cumulative improvement in elapsed 
time as the percentage of byte patterns is reduced. It is 
noticed that the use of only 10% of byte patterns can 
reduce the elapsed time by approximately 11%. Our 
experiment considers each byte pattern as a variable 
(i.e., 1-gram analysis). Since the size of the model using 
a 1-gram frequency distribution is small (i.e., limited to 
256 patterns), there is little scope for improvement in 
memory space and time. However, models using higher 
n-grams [28,29] (i.e., a variable consisting of a sequence 
of multiple bytes) are much bigger, since the number 
of distinct patterns grows exponentially. Therefore, the 
improvement in model size and computation time would 
be much greater if we used higher n-grams (but these 
are beyond the scope of this paper).

In short, the empirical results suggest that we can use 
a small percentage of high-frequency byte patterns 
with the cosine similarity, and this reduces the model 
size and improves the computation time for the cosine 
similarity.

Table 2: Percentage of file types confused with other file 
types during detection
Actual 
file type 

SC using  
CS

MC using 
CS 

SC using  
MD 

MC Using 
MD 

ASP HTML (13.1%) TXT (90.7%) HTML (11.9%) 
TXT (2.1%) 

GIF (2.9%) 
TXT (68%) 

DOC XLS (80.3%) GIF (10.3%) 
TXT (27.9%) 
XLS (31.4%) 

EXE (15.8%) 
XLS (22.7%) 

ASP (2.1%) 
GIF (24%) 
TXT (19.1%) 
XLS (16%) 

EXE DOC (18.5%) 
XLS (38.9%) 

DOC (7.2%) 
TXT (22.4%) 
XLS (25.5%) 

DOC (11.1%) DOC (21.9%) 
GIF (11.6%) 
TXT (8.6%) 
XLS (11.5%) 

GIF DOC (9.6%) 
EXE (4.2%) 
JPG (3.1%) 

TXT (17.5%) 
XLS (8.1%) 

DOC (18.5%) 
EXE (3.1%) 
MP3 (4.5%) 

DOC (8.8%) 
TXT (7.4%) 

HTML ASP (11%) 
TXT (4%) 

TXT (81.6%) ASP (4.2%) TXT (59.3%) 

JPG GIF (39.3%) 
MP3 (2.5%) 

DOC (8.5%) 
GIF (74.8%) 
XLS (15.2%) 

GIF (19%) 
MP3 (45.8%) 

DOC (7.1%) 
GIF (84.7%) 

MP3 GIF (3.1%) 
JPG (4.9%) 

DOC (9.9%) 
GIF (68.7%) 
XLS (17.6%) 

JPG (1.3%) DOC (13.5%) 
GIF (55.5%) 

PDF PDF (5.9%) 
JPG (12.2%) 

DOC (7.3%) 
GIF (32.4%) 
TXT (13.8%) 
XLS (8.6%) 

JPG (2.6%) 
MP3 (7.5%) 

DOC (27.4%) 
GIF (27.2%) 
TXT (8.4%) 

TXT ASP (34%) 
HTML (17%) 
PDF (3.8%) 

XLS (2.5%) ASP (14%) 
HTML (24.9%) 
PDF (4.9%) 
XLS (4.3%) 

GIF (4.5%) 
DOC (2.8%) 

XLS DOC (5.1%) DOC (3.9%) 
GIF (4.1%) 
TXT (23.3%) 

DOC (26%) 
EXE (7.2%) 
HTML (4%) 

DOC (8.1%) 
GIF (14%) 
TXT (20.8%) 

  
a) DOC single centroid model b) A particular DOC file 

Figure 6: Inaccurate single-centroid model of the DOC file type (the x- and y-axes represent the byte patterns and the relative 
byte frequency, respectively).

4.3  Results on the Divide-and-Conquer Approach

4.3.1  Experimental Settings

We use Ward’s clustering method [30,31], to group simi-
lar byte frequency files irrespective of their file types. It 
forms clusters by minimizing the total within-cluster sum 
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of squares. For instance, if XY is the cluster obtained by 
combining clusters X and Y, the sum of within-cluster 
distances (WXY) are

1

( ) ( )
XYn

XY i XY i XY
i

W y y y y
=

= − −′∑  (4)

where yi are data points, X X Y Y
XY

X Y

n y n y
y

n n
( )

( )
+

=
+

, and nX , nY, 
 
and nXY = nX + nY are the number of data points in X, Y, 
and XY, respectively.

The NN is configured as follows. The NN has a structure 
of 256 input nodes, 6 hidden nodes, and the same number 
of output nodes as that of the file types in the cluster. The 
number of hidden nodes is set to 6 as there is no further 
improvement in the classification accuracy with more 
nodes. It is expected that there is a point beyond which 
additional hidden nodes do not provide further benefits; 
this phenomenon is mentioned by Liang et al. [32].

Dua et al. [33] mentioned that a linear activation function 
effectively negates the benefits of a tri-layer network. 
Thus the activation function is set to a hyperbolic tangent 
and the learning rate is set to 0.1.

The SAS e-miner [34] is used for the experiments.

4.3.2  Analysis of Empirical Results

Figure 9 illustrates the grouping of different file types and 
the respective percentages. We group files in 3, 6, and 8 
clusters. Figure 9 shows that files of different types with 
similar byte frequency distributions are grouped together 
in one cluster. However, the file types with dissimilar byte 
frequency distributions lie in multiple clusters. We also 
noted some outlier clusters that were not used in the type 
identification process; we considered these to be outliers 
because each consists of only one TXT file.

The divide-and-conquer approach achieved the best 
accuracy when using 6 clusters (refer to Figure 9). Thus, 
we compare it with Harris’s work based on the NN [14] 
and Li et al.’s multicentroid modeling technique [4]. By 
comparing our clustering approach with Harris’s work, 
we can observe the impact of clustering if it is applied 
before the NN. Moreover, Li et al.’s multicentroid model 
is closest to our work because they also grouped files 
before building representative models. However, the file 
grouping method depends on the file types.

Figure 10 shows that clustering before applying the NN 
improves the classification accuracy of the NN for given 
file types JPG, MP3, PDF, XLS, and ASP by 7.6%, 20.0%, 
7.0%, 10.2%, and 9.14%, respectively.

It is noticed that (1) these file types often lie in one cluster, 
which implies that the byte frequency distributions of 
files of the same type are similar. Thus, there is a high 
probability that files of such types were assigned to the 
right cluster during the detection phase. (2) Clustering 
reduces the number of classes (file types) because the NN 
is trained for each cluster independently, and a cluster 

   
a) HTML b) TXT c) ASP 

 Figure 7: Similar multicentroid models of different file types (the x- and y-axes represent the byte patterns and the relative byte 
frequency, respectively).

Figure 8: Cumulative improvement in elapsed file-type detec-
tion time for processing 1500 files (size: 419 MB).
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often contains fewer file types than the total number of 
given file types.

Moreover, since all the file type’s sample files are 
grouped in one cluster, the NN can better generalize pat-
terns for classification for fewer file types, thus improv-
ing the classification accuracy.

On the other hand, the remaining file types (i.e., EXE, 
HTML, GIF, DOC, and TXT) usually lie in multiple clus-

ters, implying that these file types have multiple normal 
byte frequency distributions. If the sample space used for 
learning does not contain all the normal byte frequency 
distributions of a file type, and new distribution patterns 
of a file type appear during detection process, it is highly 
likely that the file will be assigned to the wrong cluster.

Moreover, since the files of such file types are divided 
into different clusters, the NN cannot effectively gener-
alize patterns to accommodate new samples. Therefore, 
considering these two cases, misclassification occurs at 
both levels, i.e., clustering and classification; this appar-
ently reduces the classification accuracy.

Figure 10 also shows the comparison with the multi-
centroid modeling technique. It is found that both the 
divide-and-conquer approach and the Harris one achieve 
higher accuracy for all file types. The weaknesses in the 
multicentroid models were discussed in section 4.2.2.

Table 3 presents the average classification accuracy of the 
methods. The results suggest that our method improves 
the accuracy by 2.00% and 53.4% over Harris’s and Li et 
al.’s techniques, respectively.

5.  Conclusion

This paper presented two new methods to identify file 
types based on file contents. The first method used the 
cosine similarity as a distance metric and a certain percent-
age of high-frequency byte patterns. The second method 
used a divide-and-conquer approach to identify file types; 
it involved clustering and classification (using a NN).

(c) Grouping file types using 8 clusters

(b) Grouping file types using 6 clusters

(a) Grouping file types using 3 clusters

Figure 9: Grouping of file types for different numbers of 
clusters.

Proposed (multi-groups
with clustering + NN)

Harris’s [14] (NN only) Li et al’s [4] (multi-groups
with multi-centroid)

Figure 10: File-type comparison between the divide-and-con-
quer approach and related works.

Table 3: Average classification accuracy comparison 
between our proposed method and related works
Methods Average classification  

accuracy
Proposed (multi-groups with clustering + NN) 90.19%

Harris’s [14] (NN only) 88.5%
Li et al’s [4] (multi-groups with multi-centroid) 58.70%
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Our conclusions about the cosine similarity (CS) are 
summarized as follows:
•  The CS is inherently more accurate than the Maha-

lanobis distance (MD). For most file types, the CS 
gives higher accuracy than the MD. For example, on 
average, the accuracy of the CS is 18.62% higher than 
that of the MD (when multicentroid models are used).

•  Moreover, when we reduce the number of byte 
patterns, the CS retains almost the same accuracy 
whereas the MD loses the accuracy. For example, the 
accuracy of the CS is almost the same even if we use 
only 10% of byte patterns.

•  Since the CS can use less number of byte patterns 
without compromising accuracy, it can have a smaller 
model size and a faster detection rate. For example, 
using 10% of byte patterns, the CS improves the detec-
tion speed by approximately 11%.

•  The improvement in the model size and the computa-
tion time would be much greater if we used a higher 
n-gram.

•  Our conclusions about the divide-and-conquer 
approach are summarized as follows:

•  The divide-and-conquer approach can improve 
the classification accuracy over the classification 
algorithm used without clustering. For example, for 
five file types the proposed approach improved the 
accuracy (ranging from 7% to 20%) compared to the 
original NN. In our experiment we noticed that such 
a file type was found in a single cluster.

•  However, the accuracy of the proposed approach was 
lower for the other five file types. In our experiment 
such a file type was found in multiple clusters; this is 
probably because such a file type has a large number 
of byte frequency distributions, some of which were 
therefore not discovered in the learning phase. We 
conjecture that the proposed approach sometimes 
shows lower accuracy than the original NN because 
of the occasional poor accuracy of the clustering 
algorithm.

We suggest two ways to further improve the divide-and-
conquer approach:
•  We can first apply our divide-and-conquer algorithm 

and, if the identified type is turned out to be the 
one of those less accurate types, then we can apply 
the original NN again. Although this will increase 
the detection time, in terms of the accuracy we can 
achieve the benefit of both our approach and the 
original NN.

•  We can use a more accurate clustering algorithm, 
which will enhance the overall accuracy of the divide-
and-conquer approach.

In summary, we can use the CS or divide-and-conquer 
approach in applications where they are best suitable 
for. The CS can be as accurate as the MD, but uses much 

smaller model size and is much faster. Therefore, the CS 
may be useful where reasonable accuracy is required 
but the fast detection speed is essential. For example, it 
would be suitable for online processing such as packet 
filtering requiring payload scanning [8]. The divide-and-
conquer approach takes longer time than the CS but gives 
a better accuracy. Therefore, it may be suitable where the 
detection accuracy is the prime objective or for offline 
applications (where the time is not critical).

In our experiment, the text-based types (ASP, TXT, and 
HTML) seem to be difficult for the divide-and-conquer 
approach. In the future, we will build a more robust solu-
tion that can effectively distinguish confusing file types 
such as ASP, TXT, and HTML. To this end, it might be 
helpful to understand the file formats, i.e., how informa-
tion is encoded in different types of files.
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