

465IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

Content-based File-type Identification Using Cosine
Similarity and a Divide-and-Conquer Approach

Irfan Ahmed, Kyung-suk Lhee, Hyunjung Shin1 and ManPyo Hong
Digital Vaccine and Internet Immune System Lab, Graduate School of Information and Communication,

1Department of Industrial and Information Systems Engineering, Ajou University, South Korea

Abstract

Identifying the file type (TXT, EXE, JPEG, etc.) is important for computer security applications such as com-
puter forensics, steganalysis, and antivirus programs. The common approach for this is to use file exten-
sions, magic numbers, or other header information. However, these are susceptible to tampering or cor-
ruption; for instance, the file extension can be easily spoofed and the magic numbers can be obfuscated.
A more reliable approach may be to analyze the file content instead of using only the tip of the information
(metadata). This paper proposes two methods based on the file content. First, we use the cosine distance
as a similarity metric when comparing the file content rather than the Mahalanobis distance that is popular
and has been used by the other related approaches. The cosine similarity (unlike the Mahalanobis distance)
retains the classification accuracy on a small number of highly frequent byte patterns which leads to a
smaller model size and faster detection rate. Second, we decompose the identification procedure into two
steps by taking the divide and conquer: in the first step, the similar files in terms of byte pattern frequencies
are grouped into several clusters. In the next step, the cluster which contains different file types is fed to the
neural network in order for finer classification. The experiments showed that the classification followed by
clustering leads to higher accuracies.

Keywords
Byte frequency distribution, Cosine similarity, Clustering, File type identification, Mahalanobis distance,
Neural network.

1. Introduction

File type (e.g., JPG, DOC, and TXT) identification by
computer operating systems is vital in order to manage
and process files. For instance, programs usually inter-
pret files as a stream of bytes, and thus it is required to
identify file types within the file system. Approaches to
this problem vary depending on the operating system,
and include the file extension (combining the file type
with the name using period), magic number (keeping
the file type information in file header), and storing the
file type in the file system.

Many security applications require identification of file
types in order to work efficiently. For example, email
attachment filtering may require blocking types of
inbound attachments that may contain malicious con-
tents. Virus scanners may be configured to skip some
file extensions; in Norton Antivirus 2008, for example,
there is an exclusion option to specify file types that
will be skipped by the virus scan [1]. Some applica-
tions raise alerts before opening unrecognized (suspi-
cious) file extensions; for instance, Windows Media
Player raises an alert when the user tries to open a file

with an unrecognized extension. Some steganalysis
programs also rely on file type detection; for example,
Stegdetect [2], which detects steganographic contents
in images, uses the libmagic1 package [3] and magic
numbers to determine the file type.

Because the current solutions that rely on metadata
information are susceptible to tampering or corruption,
they cannot be trusted to securely identify file types. For
example, file extensions can be renamed or file headers
can be encoded in order to obfuscate the file type infor-
mation. In the presence of adversaries, analyzing the
file content may be more reliable means to identify file
types. The file contents consist of bytes and 1 byte has
256 unique values, i.e. 0–255; these are denoted as byte
patterns in this paper. The total number of occurrences
of each byte pattern in a file is called the byte frequency.
Solutions such as fileprint [4] and fingerprint [5] that ana-
lyze the file content usually compute the byte frequency
vector and learn the distinguishable byte patterns of file
types. But such schemes fail to achieve high classifica-
tion accuracy.

This paper proposes two methods to improve the per-

466 IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

formance of content-based file type identification. The
first one is to use the cosine similarity for byte frequency
comparison. The cosine similarity ensures classification
accuracy when using only certain percentage of high-
frequency byte patterns; this results in a smaller model
size and faster detection rate. Using high-frequency
byte patterns can effectively eliminate nonrepresenta-
tive patterns that rarely occur in file types. Thus, it
can improve the classification accuracy as well. We
compare the cosine similarity with the Mahalanobis
distance (popular metric used by many schemes such
as Fileprint [4], PAYL [6-8]).

The second one is to use clustering ahead of file type
identification: the divide-and-conquer approach. We
group similar files in terms of their byte pattern fre-
quencies irrespective of their file types. The grouping
is based on the clustering technique. Then we perform
classification of the resulting clusters that are mixed
up with different types of files. In this paper, we use
a neural network as the classifier. We show that the
divide-and-conquer approach improves the classifica-
tion accuracy over the classification algorithm used
without clustering.

The rest of the paper is organized as follows. Section 2
presents the related works. Section 3 describes the two
proposed methods. Section 4 discusses the experimental
details and the empirical results of the proposed meth-
ods, followed by the conclusion in section 5.

2. Related Works

This section introduces previous works on file type
identification, some of which are commonly used in
operating systems where the file type information is
explicitly written in the file header or name. Other
techniques analyze the file content in order to identify
the file type.

2.1 Using File Headers

The most common and simplest means to identify the
file type is to examine the file’s extension [9], but this
can be easily spoofed by users with malicious intent.
Novices can also unintentionally change the file exten-
sion while renaming the file. Malwares can also be
easily hidden by using file extensions that are skipped
by virus scanners.

Another method to identify the file type is to examine
the magic numbers in the file [10]. For example, GIF files
begin with an ASCII representation of GIF87a or GIF89a
depending on the standard. ZIP files always have the
magic number PK at the beginning of the file; however,
because only binary files have magic numbers, this is

not applicable to text files. As with the file extension, it
can also be easily spoofed. For instance, malcodes can
be hidden using code obfuscation and alphanumeric
encoding [11-15].

Li et al. [16] categorize a file header fragment based
on its contents by using the support vector classifier
algorithm. They use an enhanced string kernel (ESK)
to discover byte-level patterns in the file header frag-
ment and use an extended suffix array data structure to
efficiently store and manipulate the feature map. They
use five file types, i.e., MS Word, MS Excel, JPG, C++,
and PDF. The classification accuracy of each file type
varies from 61% to 100% depending on the minimum
sequence length of the suffix within the sliding window.

2.2 Using File Contents

This section presents variety of content-based file type
identification schemes. Since the first two schemes are
closet to our divide-and-conquer approach, they are
also applied to our dataset in order to compare their
classification accuracies with our approach.

Li et al. [4] identify file types using n-gram analysis.
They calculate 1-gram frequency distribution of files
and build three different models of each file type: single-
centroid (one model of each file type), multicentroid
(multiple models of each file type), and exemplar files
(the set of files of each file type) as centroid. They refer
to these as the 'fileprint'. In single-centroid and multi-
centroid models, they calculate the mean and standard
deviation of the 1-gram frequency distribution of files,
and use the Mahalanobis distance to compare these
models with the 1-gram distribution of the given file
and find the closest model. In the exemplar file model,
they compare the 1-gram distribution of the exemplar
file with that of the given file (no variance is computed),
and the Manhattan distance is used instead of the Maha-
lanobis distance. Their solution cannot identify files that
have similar byte frequency distributions such as MS
Office file formats (e.g., Word and Excel), but it treats
them as a single group or abstract file type.

Harris [14] used an artificial neural network to identify
file types. The file is divided into blocks of 512 bytes and
only the first 10 blocks are used for file type identifica-
tion. Two features are extracted from each block, i.e.,
raw filtering and character code frequency. Raw filter-
ing takes each byte as an input for one neuron of the
neural network. However, the character code frequency
counts the number of occurrences of each character
code in the four blocks and takes the frequency of the
character as an input for the neurons. It is assumed that
raw filtering is useful for files for which byte patterns
occur at regular intervals; however, the character code

Ahmed I, et al.: Content-based File-type Identification

467IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

frequency is useful for files which have irregular byte
pattern occurrences. He only used image files, i.e., JPG,
PNG, TIF, GIF, and BMP, as a sample set and reported
a detection rate ranging from 1% (GIF) to 50% (TIF)
for raw filtering and from 0% (GIF) to 60% (TIF) for
character code frequency.

McDaniel and Heydari [5] introduced three algorithms
to identify file types by analyzing file content. In the
byte frequency analysis (BFA) algorithm, they calculate
the byte frequency distributions of different files and
generate the 'fingerprint' of each file type by averaging
the respective byte frequency distributions. They also
calculate the correlation strength as another characteriz-
ing factor. They take the difference between given byte
values in different files. As the difference decreases, the
correlation strength approaches to 1 and vice versa.
They use the byte frequency cross-correlation algorithm
to find the correlation between all the byte pairs. They
calculate the average frequency between all the byte
pairs and the correlation strength, in a similar manner to
the BFA algorithm. In the file header/trailer algorithm,
the file headers/trailers are byte patterns that appear at
a fixed location at the beginning/end of the file. They
maintain an array of 256 entries for each location and the
array entry corresponding to the byte value is initialized
with the correlation strength of 1. They construct the
fingerprint by averaging the correlation strength of each
file and use these algorithms to compare the file with
all the generated fingerprints and identify its file type.

Martin and Nahid [17,18] proposed the 'Oscar' method
for identifying types of file fragments. They build
single-centroid fileprints [4] but use the quadratic
distance metric and the 1-norm as distance metric to
compare the centroid with the byte frequency distribu-
tion of the file. Although Oscar identifies any file type,
it is optimized for JPEG files. They introduce the rate
of change (RoC) as the new metric which is defined as
the difference between two consecutive byte values
considering the ordering information of bytes. They
reported 99.2% detection rate of JPEG files, which is
nearly perfect. Such detection rate is possible for JPEG
files, because the JPEG format uses 0xFF as an escape
character for all metadata tags, and an extra 0x00 is
added after every 0xFF byte in the body of the file in
order to avoid ambiguity. Thus, a regular, unique, and
exploitable pattern, i.e., 0xFF00 does exist in JPEG file,
which has a very high RoC. However, the technique
does not improve the classification accuracy of file types
other than JPEG.

Amirani et al. [19] used the hierarchical feature extrac-
tion method to more effectively exploit the byte fre-
quency distributions of files for file type identification.
They believed that the multiplicity of features reduces

the speed and accuracy for file type identification. Thus,
they utilize principal component analysis and an auto-
associative neural network to reduce the 256 features
of byte patterns to certain smaller number (where the
detection error is negligible). After feature extraction,
they use three-layer multilayer perceptron (MLP) for
detecting the file types. They used the DOC, PDF, EXE,
JPG, HTM, and GIF file types for the experiments, each
consisting of 30 test data points, and they reported an
accuracy of 98.33%. However, the choice of file types
used in their experiments may have been biased. That is,
although their experimental results show high accuracy
in distinguishing different characteristics of file types
such as HTML and EXE, they didn’t try to distinguish
similar characteristics of file types, e.g., TXT and HTML
that only contain ASCII printable characters and can be
confused during detection.

Moody and Erbacher [20] aimed to identify the embed-
ded data types in files. Files of type DOC and XLS can
import a variety of objects (e.g., image files); thus these
whole files do not represent a single type. They vary
the window sizing to process a small chunk of file data.
They gathered a variety of statistical characteristics of
byte values in each window, including the average,
standard deviation, and kurtosis and used them to
identify the type of chunk. They reported 74.2% detec-
tion accuracy, which includes the high detection rate
of text-type files, i.e., CSV (100%), HTML (100%), and
TXT (80%).

Hall and Davis [21] determine file types using entropy
and compressibility measurements. They use sliding
window and calculate the entropy and compressibility
value of each window. The values of each file type are
used to obtain the average and standard deviation, and
these are compared with the test file by using point-
by-point delta and Pearson’s rank order correlation to
identify file types.

Veenman [22] extracts three features from the file con-
tent: (1) the byte frequency distribution, (2) the entropy
derived from the byte frequency distributions of files,
and (3) the algorithmic or Kolmogorov complexity
that exploits the substring order [23]. The Fisher linear
discriminant is applied to these features in order to
identify the file type.

Calhoun and Coles [24] extended Veenman’s work by
building classification models (based on statistics such
as the ASCII frequency, entropy, etc.) and applying
the linear discriminant to identify file types. They also
argued that files of the same type probably have longer
common substrings than those of different types. Our
approach also uses the byte frequency distribution
as feature and linear discriminant analysis for clas-

Ahmed I, et al.: Content-based File-type Identification

468 IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

sification. However, the main difference between our
method and Veenman’s is the means by which we build
the classification model for each file type. Veenman
computes a single discriminant function using all the
sample files for each file type. However, our approach
combines similar byte frequency files into groups by
using clustering, irrespective of their file types, and
computes the linear discriminant function for each file
type in each group. Hence, multiple functions can be
computed for each file type.

This paper is an extension of our preliminary work [25].
In this paper, we extend our work by using a neural
network to improve the classification accuracy of our
proposed method. We also present its comparison with
Harris’s approach (also based on a neural network). The
comparison substantiates our claim that file grouping
irrespective of the file type improves the classification
accuracy for a given classification algorithm.

3. Proposed Methods

3.1 Cosine Similarity and High-Frequency Byte
Patterns

The first approach we suggest in this paper is to use the
cosine similarity for vector comparison. It retains the clas-
sification accuracy when only using certain percentage of
high-frequency byte patterns. Thus, it results in a smaller
model size and a faster detection rate. Moreover, we con-
jecture that byte patterns that rarely occur in a file type do
not represent its normal patterns. If they are present in the
representative model, they can degrade the classification
accuracy. In that case, using a subset of high-frequency
byte patterns is an effective means to eliminate them and
improve the classification accuracy as well.

3.1.1 Cosine Similarity

If x is a byte frequency vector of a test file and y is the
representative model vector of the file type (obtained
by averaging the byte frequency distributions of the
file type’s sample files), then the cosine similarity is
defined as

c

x y
d cos x y

x y
(,)

⋅
= =

 (1)

where the dot '.' indicates the vector dot product,
2

1 1andn n
k k k k kx y x y x x x x= =⋅ = = = ⋅∑ ∑ is the length

of the vector. The cosine similarity is in the range [0,1].
When the value is 1, the angle between x and y is 0; thus
x and y are the same except for the magnitude. When it is
0, the angle is 90°, which means that they are dissimilar.

To prove the superiority of the cosine similarity, we
compare it with the well-known measure, based on the
Mahalanobis distance [26]. A simplified Mahalanobis
distance [4] is defined as follows:

1

1

()
(,)

n
i i

m
i i

x y
d d x y

−

=

−
= = ∑ (2)

where y and are the respective mean value and stan-
dard deviation of the byte frequency distributions of the
sample files used to build the representative file type.

The cosine similarity is different from the simplified
Mahalanobis distance, in that it puts more emphasis on
inherent characteristics of file types (angle between two
types of files) than magnitude (i.e., file size). Therefore,
normalization for sizes of files is not necessary unlike
the Mahalanobis distance.

3.1.2 Selecting a Subset of High-frequency Byte Patterns

We obtain the number of subsets of file type’s high-
frequency byte patterns via the following three steps: (1)
we average the byte frequency distributions of each file
type’s files in order to ensure that the usual frequency of
byte patterns is present; (2) the byte patterns are sorted
in a descending order with respect to their frequencies,
and (3) starting from the head of the sorted list, we extract
the number of subsets containing different percentages
of high-frequency byte patterns where i i i iS S S S1 1if+ +⊆ <
and here Si represents the subset i of a file type. For the
same percentage of high-frequency byte patterns, it is
found that different file types may have different subsets
of byte patterns.

3.2 Divide and Conquer

The other approach proposed in this paper consists of
two steps. It first groups the files using clustering and
then later (at second step) applies classification to the
group which is heterogeneous in terms of file types of
the group members. We group files without considering
their file types.

The motivation behind this approach is that the multi-
centroid modeling technique (by Li et al. [4]) groups files
with respect to their file types and builds multiple mod-
els for each file type. Thus, similar models of different
file types can be built if files of different types can have
similar byte frequency distributions, and therefore, file
types can be confused; this is an inherent problem with
their scheme (refer to section 4.2.2 for details).

3.2.1 Clustering

Clustering is an exploratory statistical procedure to

Ahmed I, et al.: Content-based File-type Identification

469IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

naturally group data into different clusters. At this
stage, we do not consider the file type. Thus, clustering
divides files of varying types (in the sample space) into
a few clusters, each of which contain files with similar
byte frequency patterns. Each cluster can have files of
one or many different types. For instance, Figure 1(b)
illustrates clustering where DOC, TXT, and ASP file types
with similar byte frequency distributions are grouped
together into three clusters.

3.2.2 Classification

After clustering, a classification algorithm is applied
to a cluster that has files of multiple types in order to
identify each type. For instance, Figure 1(c) illustrates
that the classification algorithm draws margins among
file types to separate them for clusters having files of
multiple types.

This paper uses a neural network (NN) as a classification
algorithm, which is popular and well-known in pattern
recognition [27]. We use a MLP neural network that has
input, output, and hidden nodes (refer to Figure 2). Hid-
den nodes are intermediate nodes that are not input or
output nodes. There are 256 input nodes, each represent-
ing one unique byte pattern, for which its frequency is
passed as an input value. There is only a single hidden
layer in the neural network. The n numbers of hidden
nodes are obtained on a hit-and-trial basis. The number
of output nodes is the m types of files in a cluster. For
instance, the NN has two output nodes for the cluster
having ASP and TXT file types in Figure 1(c).

3.2.3 Type Identification Process of a File

Figure 3 describes the file type identification of the pro-
posed system when a new file of an unknown type enters
into the system. At first, the relative byte frequencies of
the files are computed; then, the file is assigned to the
cluster with the most similar byte pattern frequencies.
If the assigned cluster represents only one file type, the
same type is assigned to the file; otherwise a classification

method is used to identify the exact file type. Misclas-
sification can occur during both steps, i.e. clustering and
classification. During clustering, if a test file’s type does
not match any type of the assigned cluster, it is said to
have been misclassified. For example, if file f of type X is
assigned to cluster Y but this cluster does not have type
X, then file f is considered to have been misclassified.

If not misclassified but assigned to the cluster composed
of multiple file types, it is further fed to the classifier.

4. Experiments

4.1 Dataset

We used 10 file types (JPG, HTML, GIF, EXE, MP3, PDF,
TXT, DOC, XLS, and ASP) each of having 200 files (refer
to Table 1), and hence, 2000 files in all. These file types
were chosen because of their popularity and the fact that
they cover a broad range of file contents including binary,
text, and compressed files. Fifty percent of the files were
used for the training dataset to build representative
models of file types and the remaining 50% were used
for the test dataset to test the classification accuracy of
the identification schemes.

The file type represents how the data is encoded in a file.
However, the implementation of the encoding schemes

a) Different types of files b) After clustering c) After classification
Figure 1: Schematic illustration of file type classification followed by clustering.

Table 1: Details of the dataset used for experiments
File type Quantity Average size

(Kilo bytes)
Minimum

size (Bytes)
Maximum size

(Kilo bytes)
ASP 200 3.52 49 37
DOC 200 306.44 219 7,255
EXE 200 522.71 882 35,777
GIF 200 3.24 64 762
HTML 200 11.59 117 573
JPG 200 1,208.27 21,815 7,267
MP3 200 6,027.76 235 30,243
PDF 200 1,501.12 219 32,592
TXT 200 269.03 16 69,677
XLS 200 215.98 80 9,892

Ahmed I, et al.: Content-based File-type Identification

470 IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

might slightly differ across software. Thus, we collected
sample files from different sources in order to ensure that
a file type’s sample files were not generated by a single
source. Thus, executable files were mostly obtained from
the bin and system32 folders from the Linux and Windows
XP operating systems, respectively. Moreover, other
files were collected from the internet using a general
search on Google. For example, we search for .txt files
using option filetype:txt. Image files such as GIF and JPG
were also obtained from photo-sharing websites such
as Picassa of Google, Flickr, etc. MP3 files were collected
from different random sources mostly from publically
available FTP servers for movies and personal comput-
ers. In short, such a random collection of files can be
considered an unbiased and representative sample of
the given file types.

4.2 Results on the Cosine Similarity and High-
Frequency Byte Patterns

4.2.1 Experimental Settings

We built multiple representative models of each file

type using a number of different subsets of the file
type’s high-frequency byte patterns. The two modeling
techniques, single-centroid and multicentroid, are used
for experimentation.

For the single-centroid modeling technique, we first
computed the byte frequency distribution of each file and
divided each byte pattern frequency by the file size; then
we considered each byte pattern’s relative frequency as a
variable, and computed its mean and standard deviation
for each file type. For the multicentroid model, we use
the k-means algorithm to group similar byte frequency
files with respect to their file types. We chose a random
value of k (3) as Li et al. [4] have reported similar results
for different values of k. Thus, k multiple models were
built for each file type. Each model contained a mean
and standard deviation that were computed in a similar
manner to the single-centroid model. We adopted Li et
al.’s work because they use the Mahalanobis distance
as a comparison metric and their single-centroid model
is also used by other methods [17-22]. Moreover, their
multicentroid model is comparable to our divide-and-
conquer approach.

We use the simplified Mahalanobis distance formula
and the cosine similarity to compare the test file’s byte
frequency distributions with the models. The aim is
to find the classification accuracy of both comparison
metrics for different percentages of high-frequency byte
patterns (refer to the subsequent section). The accuracy
(%) is calculated using the following equation:

Accuracy(%) =
(Total no. of files - misclassified files)

Total no. of files (3)

4.2.2 Analysis of Empirical Results

Figure 4 shows the average classification accuracy of the
Mahalanobis distance and the cosine similarity (refer to
the appendix for the individual file-type comparison).
We notice that the cosine similarity retains its clas-Figure 2: Structure of the MLP neural network.

Figure 3: Identifying a test file using the divide-and-conquer approach.

Ahmed I, et al.: Content-based File-type Identification

471IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

sification accuracy when using different percentages
(10–100%) of byte patterns (high-frequency). The same
results are obtained for most of the given file types; for
the cosine similarity, the classification accuracy remains
the same or improves as the number of byte patterns in
the model decreases. However, the classification accu-
racy is degraded for the Mahalanobis distance.

It is also noticed in Figure 4 that the multicentroid model
shows better accuracy than the single-centroid one.
However, the average classification accuracy for Li et al.’s
modeling technique is less than 80%, which is relatively
low and may be unsatisfactory for many applications. In
order to identify the cause of this, we analyzed the byte
frequency distribution of the file types in the dataset.
The following two difficulties were found.

1. Byte frequency distributions of different file types can
be similar. That is, they can have similar graphical
representations of byte frequency distributions (see
Figure 5 (a) and (b)). For instance, the text files such
as ASP and HTML show this characteristic as they
contain hypertext markup language.

2. Byte frequency distributions from a same file type
can be different. That is, the files of the same type
can have different graphical representations of
byte-frequency distributions (see Figure 5 (c) and
(d)). For instance, compound files such as DOC and
XLS files can embed different types of files (such as
image files, etc.) in a single file.

A robust solution for file-type identification should cope
with these difficulties. However, the single- and multi-

Figure 4: Average classification accuracy of single-centroid
(SC) and multicentroid (MC) models for the cosine similarity
(CS) and Mahalanobis distance (MD) using 10 file types.

ASP HTML

DOC DOC

 Figure 5: (a) and (b) show that the ASP and HTML file types can have similar byte frequency patterns; (c) and (d) show that
two DOC files can have different byte frequency patterns (the x- and y-axes represent the byte patterns and the relative byte
frequency, respectively).

Ahmed I, et al.: Content-based File-type Identification

472 IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

centroid modeling techniques of Li et al. do not consider
them and thus, they fail to achieve high classification
accuracy. The single-centroid modeling technique aver-
ages the byte frequency distribution of a file type’s files
and builds a single representative model for each file
type. Thus, it cannot yield an accurate representative
model if the file type has more than one normal byte
frequency distribution (see Figure 6). The multicentroid
modeling technique groups files with respect to their
file types and builds multiple models for each file type.
Thus, it can build similar models of different file types
if files of different types can have similar byte frequency
distributions,

and therefore it can confuse file types (see Figure 7).
Table 2 shows the average percentage of file types that
are confused with other types, as noted during the
experiments.

Figure 8 shows the cumulative improvement in elapsed
time as the percentage of byte patterns is reduced. It is
noticed that the use of only 10% of byte patterns can
reduce the elapsed time by approximately 11%. Our
experiment considers each byte pattern as a variable
(i.e., 1-gram analysis). Since the size of the model using
a 1-gram frequency distribution is small (i.e., limited to
256 patterns), there is little scope for improvement in
memory space and time. However, models using higher
n-grams [28,29] (i.e., a variable consisting of a sequence
of multiple bytes) are much bigger, since the number
of distinct patterns grows exponentially. Therefore, the
improvement in model size and computation time would
be much greater if we used higher n-grams (but these
are beyond the scope of this paper).

In short, the empirical results suggest that we can use
a small percentage of high-frequency byte patterns
with the cosine similarity, and this reduces the model
size and improves the computation time for the cosine
similarity.

Table 2: Percentage of file types confused with other file
types during detection
Actual
file type

SC using
CS

MC using
CS

SC using
MD

MC Using
MD

ASP HTML (13.1%) TXT (90.7%) HTML (11.9%)
TXT (2.1%)

GIF (2.9%)
TXT (68%)

DOC XLS (80.3%) GIF (10.3%)
TXT (27.9%)
XLS (31.4%)

EXE (15.8%)
XLS (22.7%)

ASP (2.1%)
GIF (24%)
TXT (19.1%)
XLS (16%)

EXE DOC (18.5%)
XLS (38.9%)

DOC (7.2%)
TXT (22.4%)
XLS (25.5%)

DOC (11.1%) DOC (21.9%)
GIF (11.6%)
TXT (8.6%)
XLS (11.5%)

GIF DOC (9.6%)
EXE (4.2%)
JPG (3.1%)

TXT (17.5%)
XLS (8.1%)

DOC (18.5%)
EXE (3.1%)
MP3 (4.5%)

DOC (8.8%)
TXT (7.4%)

HTML ASP (11%)
TXT (4%)

TXT (81.6%) ASP (4.2%) TXT (59.3%)

JPG GIF (39.3%)
MP3 (2.5%)

DOC (8.5%)
GIF (74.8%)
XLS (15.2%)

GIF (19%)
MP3 (45.8%)

DOC (7.1%)
GIF (84.7%)

MP3 GIF (3.1%)
JPG (4.9%)

DOC (9.9%)
GIF (68.7%)
XLS (17.6%)

JPG (1.3%) DOC (13.5%)
GIF (55.5%)

PDF PDF (5.9%)
JPG (12.2%)

DOC (7.3%)
GIF (32.4%)
TXT (13.8%)
XLS (8.6%)

JPG (2.6%)
MP3 (7.5%)

DOC (27.4%)
GIF (27.2%)
TXT (8.4%)

TXT ASP (34%)
HTML (17%)
PDF (3.8%)

XLS (2.5%) ASP (14%)
HTML (24.9%)
PDF (4.9%)
XLS (4.3%)

GIF (4.5%)
DOC (2.8%)

XLS DOC (5.1%) DOC (3.9%)
GIF (4.1%)
TXT (23.3%)

DOC (26%)
EXE (7.2%)
HTML (4%)

DOC (8.1%)
GIF (14%)
TXT (20.8%)

a) DOC single centroid model b) A particular DOC file

Figure 6: Inaccurate single-centroid model of the DOC file type (the x- and y-axes represent the byte patterns and the relative
byte frequency, respectively).

4.3 Results on the Divide-and-Conquer Approach

4.3.1 Experimental Settings

We use Ward’s clustering method [30,31], to group simi-
lar byte frequency files irrespective of their file types. It
forms clusters by minimizing the total within-cluster sum

Ahmed I, et al.: Content-based File-type Identification

473IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

of squares. For instance, if XY is the cluster obtained by
combining clusters X and Y, the sum of within-cluster
distances (WXY) are

1

() ()
XYn

XY i XY i XY
i

W y y y y
=

= − −′∑ (4)

where yi are data points, X X Y Y
XY

X Y

n y n y
y

n n
()

()
+

=
+

, and nX , nY,

and nXY = nX + nY are the number of data points in X, Y,
and XY, respectively.

The NN is configured as follows. The NN has a structure
of 256 input nodes, 6 hidden nodes, and the same number
of output nodes as that of the file types in the cluster. The
number of hidden nodes is set to 6 as there is no further
improvement in the classification accuracy with more
nodes. It is expected that there is a point beyond which
additional hidden nodes do not provide further benefits;
this phenomenon is mentioned by Liang et al. [32].

Dua et al. [33] mentioned that a linear activation function
effectively negates the benefits of a tri-layer network.
Thus the activation function is set to a hyperbolic tangent
and the learning rate is set to 0.1.

The SAS e-miner [34] is used for the experiments.

4.3.2 Analysis of Empirical Results

Figure 9 illustrates the grouping of different file types and
the respective percentages. We group files in 3, 6, and 8
clusters. Figure 9 shows that files of different types with
similar byte frequency distributions are grouped together
in one cluster. However, the file types with dissimilar byte
frequency distributions lie in multiple clusters. We also
noted some outlier clusters that were not used in the type
identification process; we considered these to be outliers
because each consists of only one TXT file.

The divide-and-conquer approach achieved the best
accuracy when using 6 clusters (refer to Figure 9). Thus,
we compare it with Harris’s work based on the NN [14]
and Li et al.’s multicentroid modeling technique [4]. By
comparing our clustering approach with Harris’s work,
we can observe the impact of clustering if it is applied
before the NN. Moreover, Li et al.’s multicentroid model
is closest to our work because they also grouped files
before building representative models. However, the file
grouping method depends on the file types.

Figure 10 shows that clustering before applying the NN
improves the classification accuracy of the NN for given
file types JPG, MP3, PDF, XLS, and ASP by 7.6%, 20.0%,
7.0%, 10.2%, and 9.14%, respectively.

It is noticed that (1) these file types often lie in one cluster,
which implies that the byte frequency distributions of
files of the same type are similar. Thus, there is a high
probability that files of such types were assigned to the
right cluster during the detection phase. (2) Clustering
reduces the number of classes (file types) because the NN
is trained for each cluster independently, and a cluster

a) HTML b) TXT c) ASP

 Figure 7: Similar multicentroid models of different file types (the x- and y-axes represent the byte patterns and the relative byte
frequency, respectively).

Figure 8: Cumulative improvement in elapsed file-type detec-
tion time for processing 1500 files (size: 419 MB).

Ahmed I, et al.: Content-based File-type Identification

474 IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

often contains fewer file types than the total number of
given file types.

Moreover, since all the file type’s sample files are
grouped in one cluster, the NN can better generalize pat-
terns for classification for fewer file types, thus improv-
ing the classification accuracy.

On the other hand, the remaining file types (i.e., EXE,
HTML, GIF, DOC, and TXT) usually lie in multiple clus-

ters, implying that these file types have multiple normal
byte frequency distributions. If the sample space used for
learning does not contain all the normal byte frequency
distributions of a file type, and new distribution patterns
of a file type appear during detection process, it is highly
likely that the file will be assigned to the wrong cluster.

Moreover, since the files of such file types are divided
into different clusters, the NN cannot effectively gener-
alize patterns to accommodate new samples. Therefore,
considering these two cases, misclassification occurs at
both levels, i.e., clustering and classification; this appar-
ently reduces the classification accuracy.

Figure 10 also shows the comparison with the multi-
centroid modeling technique. It is found that both the
divide-and-conquer approach and the Harris one achieve
higher accuracy for all file types. The weaknesses in the
multicentroid models were discussed in section 4.2.2.

Table 3 presents the average classification accuracy of the
methods. The results suggest that our method improves
the accuracy by 2.00% and 53.4% over Harris’s and Li et
al.’s techniques, respectively.

5. Conclusion

This paper presented two new methods to identify file
types based on file contents. The first method used the
cosine similarity as a distance metric and a certain percent-
age of high-frequency byte patterns. The second method
used a divide-and-conquer approach to identify file types;
it involved clustering and classification (using a NN).

(c) Grouping file types using 8 clusters

(b) Grouping file types using 6 clusters

(a) Grouping file types using 3 clusters

Figure 9: Grouping of file types for different numbers of
clusters.

Proposed (multi-groups
with clustering + NN)

Harris’s [14] (NN only) Li et al’s [4] (multi-groups
with multi-centroid)

Figure 10: File-type comparison between the divide-and-con-
quer approach and related works.

Table 3: Average classification accuracy comparison
between our proposed method and related works
Methods Average classification

accuracy
Proposed (multi-groups with clustering + NN) 90.19%

Harris’s [14] (NN only) 88.5%
Li et al’s [4] (multi-groups with multi-centroid) 58.70%

Ahmed I, et al.: Content-based File-type Identification

475IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

Our conclusions about the cosine similarity (CS) are
summarized as follows:
• The CS is inherently more accurate than the Maha-

lanobis distance (MD). For most file types, the CS
gives higher accuracy than the MD. For example, on
average, the accuracy of the CS is 18.62% higher than
that of the MD (when multicentroid models are used).

• Moreover, when we reduce the number of byte
patterns, the CS retains almost the same accuracy
whereas the MD loses the accuracy. For example, the
accuracy of the CS is almost the same even if we use
only 10% of byte patterns.

• Since the CS can use less number of byte patterns
without compromising accuracy, it can have a smaller
model size and a faster detection rate. For example,
using 10% of byte patterns, the CS improves the detec-
tion speed by approximately 11%.

• The improvement in the model size and the computa-
tion time would be much greater if we used a higher
n-gram.

• Our conclusions about the divide-and-conquer
approach are summarized as follows:

• The divide-and-conquer approach can improve
the classification accuracy over the classification
algorithm used without clustering. For example, for
five file types the proposed approach improved the
accuracy (ranging from 7% to 20%) compared to the
original NN. In our experiment we noticed that such
a file type was found in a single cluster.

• However, the accuracy of the proposed approach was
lower for the other five file types. In our experiment
such a file type was found in multiple clusters; this is
probably because such a file type has a large number
of byte frequency distributions, some of which were
therefore not discovered in the learning phase. We
conjecture that the proposed approach sometimes
shows lower accuracy than the original NN because
of the occasional poor accuracy of the clustering
algorithm.

We suggest two ways to further improve the divide-and-
conquer approach:
• We can first apply our divide-and-conquer algorithm

and, if the identified type is turned out to be the
one of those less accurate types, then we can apply
the original NN again. Although this will increase
the detection time, in terms of the accuracy we can
achieve the benefit of both our approach and the
original NN.

• We can use a more accurate clustering algorithm,
which will enhance the overall accuracy of the divide-
and-conquer approach.

In summary, we can use the CS or divide-and-conquer
approach in applications where they are best suitable
for. The CS can be as accurate as the MD, but uses much

smaller model size and is much faster. Therefore, the CS
may be useful where reasonable accuracy is required
but the fast detection speed is essential. For example, it
would be suitable for online processing such as packet
filtering requiring payload scanning [8]. The divide-and-
conquer approach takes longer time than the CS but gives
a better accuracy. Therefore, it may be suitable where the
detection accuracy is the prime objective or for offline
applications (where the time is not critical).

In our experiment, the text-based types (ASP, TXT, and
HTML) seem to be difficult for the divide-and-conquer
approach. In the future, we will build a more robust solu-
tion that can effectively distinguish confusing file types
such as ASP, TXT, and HTML. To this end, it might be
helpful to understand the file formats, i.e., how informa-
tion is encoded in different types of files.

6. Acknowledgments

The authors are grateful to the anonymous reviewers for their
valuable feedback which has significantly improved the quality
and the presentation of the paper.

This research is supported by the Ubiquitous Computing and
Network (UCN) Project, Knowledge and Economy Frontier
RD Program of the Ministry of Knowledge Economy (MKE) in
Korea and a result of subproject UCN 09C1-C5-20S.

H Shin would like to gratefully acknowledge support from Post
Brain Korea 21 and the research grant from Korean Govern-
ment (MOEHRD).

References

1. Exclusion option to skip the files for scan in Norton antivirus,
http://service1.symantec.com/SUPPORT/nav.nsf/0/c829006aa
01d540b852565a6007770d8? [last cited on 2009 Sep 25].

2. Stegdetect. Available from: http://packages.debian.org/unstable/
utils/stegdetect. [last cited on 2009 Sep 25].

3. Libmagic1 package. Available from: http://packages.debian.org/
unstable/libs/libmagic1 [last cited on 2009 Sep 25].

4. W.J. Li, K. Wang, S.J. Stolfo, and B. Herzog. "Fileprints: Identifying
file types by n-gram analysis," in workshop on Information
Assurance and security (IAW'05), United States Military Academy,
West Point, NY, pp. 64-71, 2005.

5. M. McDaniel, and M.H. Heydari. "Content based file type
detection algorithms," in proceedings of the 36th Annual Hawaii
International Conference on System Sciences (HICSS'03), pp.
332-42, 2003.

6. K. Wang, and S.J. Stolfo. "Anomalous payload-based network
intrusion detection," in International Symposium on Recent
Advances in Intrusion Detection (RAID'04), pp. 203-22, 2004.

7. N. Srinivasan, and V. Vaidehil. "Reduction of false alarm rate
in detecting network anomaly using mahalanobis distance and
similarity measure," in proceedings of ICSCN, pp. 366-71, 2007.

8. I. Ahmed, and K.S. Lhee. "Detection of malcodes by packet
classification," in Workshop on Privacy and Security by means of
Artificial Intelligence (ARES'08), Spain, pp. 1028-35, 2008.

9. File extensions. Available from: http://www.file-extension.com/
[last cited on 2009 Sep 25].

Ahmed I, et al.: Content-based File-type Identification

476 IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

10. Magic numbers. Available from: http://qdn.qnx.com/support/docs/
qnx4/utils/m/magic.html [last cited on 2009 Sep 25].

11. C. Nachenberg. "Polymorphic virus detection module," United
States Patent No. 5826013, 1998.

12. P. Szor, and P. Ferrie. "Hunting for metamorphic," in proceedings of
Virus Bulletin Conference, pp.123-44, 2001.

13. RIX, Writing IA32 Alphanumeric Shellcodes, Available from:
http://www.phrack.org/issues.html?issue=57andid=15#article
[last cited on 2009 Sep 25].

14. R.M. Harris. "Using artificial neural networks for forensic file type
identification," in technical report at Purdue University, USA, 2007.

15. R. Eller. "Bypassing MSB Data Filters for Buffer Overflow Exploits
on Intel platforms," Available from: http://community.core-di.
com/~juliano/bypassmsb.txt, [last cited on 2003].

16. B. Li, Q. Wang, and J. Luo. "Forensic analysis of document fragment
based on SVM," in proceedings of International Conference on
Intelligent Information Hiding and Multimedia, Pasaena, CA, pp.
236-9, 2006.

17. K. Martin, and S. Nahid. "Oscar - file type identification of binary
data in disk clusters and RAM pages," in IFIP security and privacy
in dynamic environments, pp.413-24, 2006.

18. P. Szor, and P. Ferrie. "Hunting for metamorphic," in proceedings of
Virus Bulletin Conference, pp. 123-44, 2001.

19. M.C. Amirani, M. Toorani, and A.A.B. Shirazi. "A new approach
to content-based file type detection," in IEEE Symposium on
Computers and Communications (ISCC'08), pp.1103-8, 2008.

20. S. J. Moody, and R.F. Erbacher. "SADI - Statistical Analysis for Data
type Identification," in third international workshop on Systematic
Approaches to Digital Forensic Engineering (SADFE'08), pp. 41-
54, 2008.

21. G.A. Hall, and W.P. Davis. "Sliding window measurement for file
type identification," Available from: http://www.mantechcfia.
com/SlidingWindowMeasurementforFileTypeIdentification.pdf
[last cited on 2009 Sep 25].

22. C.J. Veenman. "Statistical disk cluster classification for file carving,"
in IEEE third international symposium on information assurance

and security, pp. 393-8, 2007.
23. A.N. Kolmogorov. "Three approaches to the quantitative definition

of information," Problems of Information Transmission, vol. 1, pp.
1-11, 1965.

24. W.C. Calhoun, and D. Coles. "Predicting the types of file
fragments," Digital Investigation, Elsevier, vol. 5(1), pp.14-20,
2008.

25. Ahmed, K.S. Lhee, H. Shin, and M.P. Hong. "On improving the
accuracy and performance of content-based file type identification,"
in proceedings of the 14th Australian conference on information
security and privacy (ACISP'09), Australia, pp.44-59, 2009.

26. P.N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining.
Addison Wesley, 2005.

27. J. Mena. Investigative data mining for security and criminal
detection. Butterworth-Heinemann, 2003.

28. K. Wang, J.J. Parekh, and S.J. Stolfo. "Anagram: a content anomaly
detector resistant to mimicry attack," in International Symposium
on Recent Advances in Intrusion Detection (RAID'06), pp. 226-48,
2006.

29. G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee. "BotHunter:
detecting malware infection through ids-driven dialog correlation,"
in 16th USENIX Security Symposium, pp. 167-82, 2007.

30. J.H. Ward. "Hierarchical grouping to optimize an objective
function," Journal of the American Statistical Association, vol.
58(301), pp. 236-44, 1963.

31. A.C. Rencher. Methods of Multivariate Analysis. Wiley-
Interscience, 2002.

32. T.P. Liang, H. Moskowitz, and Y. Yih. "Integrating neural networks
and semi-markov processes for automated knowledge acquisition,"
An Application to Real-time Scheduling, Decision sciences, vol,
23(6), pp. 1297-314, 2007.

33. R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification. John
Wiley and Sons, 2001.

34. SAS E-miner. Available from: http://www.sas.com/ [last cited on
2009 Sep 25].

Ahmed I, et al.: Content-based File-type Identification

477IETE TECHNICAL REVIEW | VOL 27 | ISSUE 6 | NOV-DEC 2010

AUTHORS
Irfan Ahmed received his B.E. degree from NED
University of Engineering and Technology (NEDUET)
in 2003 and M.S. degree in Computer Science from
SZABIST, Pakistan in 2005. He is currently pursuing his
Ph.D. degree at Graduate School of Information and
Communication, Ajou University, South Korea.

E-mail: irfan@ajou.ac.kr

Kyung-suk Lhee received the Ph.D. degree in Computer
and Information science from Syracuse University
in 2005. He joined the Division of Information and
Computer Engineering at Ajou University, Korea
in 2005. His research interests are in the areas of
computer and network security.

E-mail: klhee@ajou.ac.kr

DOI: 10.4103/0256-4602.67149; Paper No TR 333_09; Copyright © 2010 by the IETE

Comparison of single centroid (SC) and multicentroid (MC) models with the cosine similarity (CS) and Mahalanobis distance
(MD).

Appendix

Ahmed I, et al.: Content-based File-type Identification

Hyunjung (Helen) Shin received the Ph.D. degree in
Data Mining from Seoul National University, and further
majored in Machine Learning during her Post-Doc at
Max Planck Institute in Germany. Since 2006, she joined
Ajou University as a faculty member of the Department
of Industrial and Information Systems Engineering. Her
research activities range across areas as different as

hospital fraud detection, direct marketing in CRM, oil/stock price prediction,
bio-medical informatics, etc.

E-mail: shin@ajou.ac.kr

Manpyo Hong is a Professor in the Division of
Information and Computer Engineering at Ajou
University. His current research interests are Information
Security. He received a BS, MS and PhD degree from
the Department of Computer Science, Seoul National
University, in 1981, 1983 and 1991 respectively.

E-mail: mphong@ajou.ac.kr

