### Semantically enabled and statistically supported biological hypothesis testing with tissue microarray databases

Young Soo Song<sup>1,2</sup>, Chan Hee Park<sup>2</sup>, Hee-Joon Chung<sup>2</sup>, Hyunjung Shin<sup>1</sup>, Jihun Kim<sup>1</sup> and Ju Han Kim<sup>2,3\*</sup>

<sup>1</sup>Department of Industrial & Information Systems Engineering, Ajou University, Korea <sup>2</sup>Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, Korea



APBC2011 The 9<sup>th</sup> Asia Pacific Bioinformatics Conference

### Simplified workflow of biological research

- 1. Hypothesis generation
- 2. Design of experiment
- 3. Performing an experiment
- 4. Data collection from experiment results or other sources
- 5. Analysis and interpretation of data
- 6. Evaluation of the hypothesis



### **Biological Database**

- Collections of scientific experiments, published literatures, computational analyses
- · Essential resources to biologists in their daily researches
- Not directly answer for the questions biologists really want to ask
  - Is my hypothesis true based on stored experimental data?
- Only storing of a lot of experimental data is not useful anymore.
  - Design a system performing hypothesis testing based on stored experimental data



APBC2011 The 9<sup>th</sup> Asia Pacific Bioinformatics Conference

# If all possible experimental results were stored in DB...

- 1. Hypothesis generation
- 2. Design of experiment
- 3. Performing an experiment
- Data collection from experiment results or the other sources → Data collection from DB
- 5. Analysis and interpretation of data
- 6. Evaluation of the hypothesis



## Main processes to design a system evaluating biological hypotheses

- 1. Machine-readable formal representation of hypothesis and experimental data
- 2. Query generation
  - Based on the hypothesis and stored data

#### 3. Statistical tests for query results

- Based on the type of hypothesis



### Candidates for a prototype system

- The complexity of the semantics of biological hypothesis is comparable to that of natural languages.
- To reduce the complexity,
  - Experimental data should be high throughput one.
  - Simply formalized hypotheses should be tested.
  - Existence of standard data structure for experimental results

#### $\rightarrow$ Tissue microarray data



### An example of hypothesis testing

- Reduced expression of Apaf-1 in colorectal cancer correlates with high-grade phenotype (Paik *et al.*, 2007).
  - Search for the sample of colorectal cancer
  - Make a contingency table according to Apaf-1 intensity and grade

|            | Strong Apaf-1 | Weak Apaf-1 |  |
|------------|---------------|-------------|--|
| High grade | а             | b           |  |
| Low grade  | С             | d           |  |

#### Fisher's exact test(a, b, c, d)



The 9<sup>th</sup> Asia Pacific Bioinformatics Conference

### Tissue Microarray (TMA)

- Array-based, high-throughput technology
- Examine molecular alterations in a number of tissues on a single slide in parallel.
- High-throughput validation tool of the marker genes identified from DNA microarray experiments



#### TMA experimental database : Xperanto-TMA

- A web-based application for TMA experiments
- Based on an object model, TMA-OM (Lee *et al.*, 2006) and an exchange format, TMA-TAB (Song *et al.*, 2010)
- More than 100 TMA experiments are stored.



### Syntax of hypothesis determines statistical test.

- Statistical tests for a hypothesis that can be represented as correlate(con, ind, dep)
  - Fisher's exact test,  $\chi^2$  test
- An example
  - In colon cancer, high Apaf-1 intensity is correlated with low histologic grade
    - Contingency table for colon cancer

|            | Strong Apaf-1 | Weak Apaf-1 |
|------------|---------------|-------------|
| High grade | а             | b           |
| Low grade  | С             | d           |

• Fisher's exact test(a, b, c, d)



### Syntax of hypothesis for TMA experiment

- correlate(con, ind, dep)
  - con: context
  - ind : independent entity
  - dep : dependent entity
- An example
  - In colon cancer, high Apaf-1 intensity is correlated with low histologic grade.
  - $\rightarrow$  correlate(colon cancer, high Apaf-1 intensity, low histologic grade)



APBC2011 The 9<sup>th</sup> Asia Pacific Bioinformatics Conference

# Construction of a system for hypothesis testing using TMA data (Xperanto-RDF)

- Construction of database
  - RDF-represented TMA database
  - Data source: Xperanto-TMA
- Hypothesis processing
  - Hypothesis editing
  - Generation of hypothesis model
  - Query generation
  - Statistical test



APBC2011 The 9<sup>th</sup> Asia Pacific Bioinformatics Conference

### RDF representation of TMA data

- Reasons
  - RDF-based models support richer semantics than RDB-based ones.
    - An entity and the relationships between entities can be explicitly represented.
    - Schema is implemented in the system together with data.
  - SPARQL as a query language is more intuitively understandable to human-beings.
  - Integration with the other TMA or different types of omics data was considered for the future works.
- Data from Xperanto-TMA was represented as RDF.



## Query generation according to hypothesis model

 $SPARQL_i := "SELECT count(distinct ?cr) WHERE {" + <math>\Sigma phrase_{ij}$  +

"?sl xpe:Slide Block ?b. ?sl xpe:Slide\_Reporter ?r.}"

Phraseij := Factor2SPARQL<sub>j</sub>(Factor<sub>j</sub>, Valueset<sub>ij</sub>)

 $Valueset_{ij}$ : if j = 1, the shared properties among the samples if ((i = 1, 3) and j = 2) or

((i = 1, 2) and j = 3), hypothesis-describing value set for *Factor*<sub>j</sub>,

otherwise its complementary value set

(i = 1, 2, 3, 4, j = 1, 2, 3).



### Hypothesis editing and hypothesis model

- correlate(con, ind, dep)
  - con: context
  - ind : independent entity
  - dep : dependent entity



Hypothesis editor

### Statistical test module

- Type of statistical test is determined by syntax of the input hypothesis.
- Query results are delivered to statistical test module as arguments.



# Testing of the reliability of Xperanto-RDF by experimentally proved hypotheses

| Hypothesis                         | # of experiments | # of slides | # of samples | P value     |
|------------------------------------|------------------|-------------|--------------|-------------|
|                                    |                  |             |              | (Fisher's   |
|                                    |                  |             |              | exact test) |
| Reduced expression of Apaf-1 in    | 3                | 5           | 55           | < 0.0001    |
| colorectal carcinoma correlates    |                  |             |              |             |
| with high-grade phenotype.         |                  |             |              |             |
| (Paik <i>et al.,</i> 2007)         |                  |             |              |             |
| In gastric cancer, HDAC2           | 3                | 4           | 52           | < 0.0001    |
| expression is associated with      |                  |             |              |             |
| negative lymph node metastasis.    |                  |             |              |             |
| (Weichert <i>et al.</i> , 2008)    |                  |             |              |             |
| In colon cancer, the expression of | 2                | 3           | 50           | < 0.0001    |
| Leptin is associated with negative |                  |             |              |             |
| lymph node metastasis.             |                  |             |              |             |
| (Paik <i>et al</i> ., 2009)        |                  |             |              |             |

### Availability

• Xperanto-RDF

http://clara.snubi.org/Xperanto-RDF

 Xperanto-TMA http://xperanto.snubi.org/tma



### Interpretation of results of hypothesis testing by Xperanto-RDF

- The meaning of positive results
  - According to the TMA experiments stored in Xperanto-RDF, your hypothesis is likely to be true.
  - But we cannot decide whether your hypothesis would be still true in the real world.
  - Highly controlled experiment should be designed and performed to prove the hypothesis.
  - But as data is more accumulated, the difference between real world and Xperanto-RDF will be reduced.

