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Abstract 
Accurate and less invasive personalized predictive 
medicine can spare many breast cancer patients from 
receiving complex surgical biopsies, unnecessary adjuvant 
treatments and its expensive medical cost. Cancer 
prognosis estimates recurrence of disease and predict 
survival of patient; hence resulting in improved patient 
management. To develop such knowledge based 
prognostic system, this paper examines potential 
hybridization of accuracy and interpretability in the form 
of Fuzzy Logic and Decision Trees, respectively. Effect of 
rule weights on fuzzy decision trees is investigated to be an 
alternative to membership function modifications for 
performance optimization. 
Experiments were performed using different combinations 
of: number of decision tree rules, types of fuzzy 
membership functions and inference techniques for breast 
cancer survival analysis. SEER breast cancer data set 
(1973-2003), the most comprehensible source of 
information on cancer incidence in United States, is 
considered. Performance comparisons suggest that 
predictions of weighted fuzzy decision trees (wFDT) are 
more accurate and balanced, than independently applied 
crisp decision tree classifiers; moreover it has a potential to 
adapt for significant performance enhancement. 
 
Keywords:  Prognosis, knowledge based, hybridization, 
accuracy, interpretability, membership functions, 
inference, crisp and fuzzy 

1 Introduction 
 
According to National Cancer Institute of United 

States, estimated number of new breast cancer cases in 
2008 is 182,460 (female) and 1,990 (male), while the 
estimation of deaths is 40,480 (female); 450 (male) 
(National Cancer Institute 2008). Based on current rates, 
12.7 percent of women born in US today will be diagnosed 
with breast cancer at some time in their lives. Surgical 
biopsies confirm malignancy with high level of sensitivity, 
but are considered costly and can affect patient’s 
psychology as well (Iliaas, Elias and Ioannis 2007).  
 
Copyright (c)2008, Australian Computer Society, Inc. This paper 
appeared at the Seventh Australasian Data Mining Conference 
(AusDM 2008), Glenelg, Australia. Conferences in Research and 
Practice in Information Technology, Vol. 87. John F. Roddick, 
Jiuyong Li, Peter Christen and Paul Kennedy, Eds. Reproduction 
for academic, not-for profit purposes permitted provided this text 
is included. 

After confirmation of malignancy, oncologists get 
indulged into prognostic decision making. Surgery, 
radiation, chemotherapy, hormone therapy or any 
combination of them are considered to be the successful 
treatment methods. But again, selection of treatment 
method without considering the resulting tumour 
behaviour can lead to severe consequences. Therefore, 
being able to predict disease outcomes more accurately 
would help physicians make informed decisions regarding 
the potential necessity of adjuvant treatment. This may 
also lead to the development of individually tailored 
treatments to maximize the efficacy of treatment.  

Ultimately, breast cancer mortality would also be 
decreased. This idea is the basic motivation behind the 
growing trend of focusing on accurate and less invasive 
personalized predictive medicine using machine learning 
techniques. This approach can spare many breast cancer 
patients from receiving complex surgical biopsies, 
unnecessary adjuvant treatments and its expensive medical 
cost (Yijun et al. 2007). Moreover, in situations where 
experienced oncologists are not available, predictive 
models created with data mining techniques can be used to 
support physicians in decision making with acceptable 
accuracy (Amir et al. 2007).  

Prognosis helps in establishing a treatment plan by 
predicting the outcome of a disease. There are three 
predictive foci of cancer prognosis: 1) prediction of cancer 
susceptibility (risk assessment), 2) prediction of cancer 
recurrence and 3) prediction of cancer survivability. Focus 
of this paper is prediction of survivability of a particular 
patient suffering from breast cancer. ‘‘Survival’’ is 
generally defined as a patient remaining alive for a 
specified period of time after the diagnosis of disease. For 
this research effort, survival is considered as any incidence 
of breast cancer where the person is still living after 1825 
days (5 years) from the date of diagnosis, as recommended 
by Dursun et al. 2004, Brenner and Gefellor 2002 and Cox 
DR. 1984.  
In this research project, we surveyed various research 
efforts (Joseph et al. 2006, Ilias and Elias 2007, Dursun et 
al. 2004, Crokett et al. 2006, Andres and a-reyes 1999 and 
others will be mentioned later in this paper) in the 
application of different machine learning techniques to 
breast cancer prognosis. Some of the obvious trends which 
account for the motivation behind proposals and 
experiments presented in this manuscript are: 

1. About 70% of all reported studies [Dursun et al. 
2004] use Neural Networks which yield “Black 
Box” models for physicians to interpret. 

2. Majority of reported studies in surveys like 
[Dursun et al. 2004] used machine learning 
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techniques independently without considering 
potential in those techniques to cooperate with 
each other in a hybrid model. 

3. Fuzzy logic has been rarely used in cancer 
prognosis. Being non-crisp, it can act as a natural 
ally of a physician in prognostic decision making 
process. 

4. Lack of attention paid to data size. Data sets 
considered are not sufficiently large that can be 
reasonably partitioned into disjoint training and 
test sets.  

Before going into the details of these observations, let us 
first analyze their conceptual importance to intelligent 
cancer prognosis at the grass root level.   

The design of any decision support system always faces 
a critical trade-off known as accuracy-interpretability 
trade-off. This trade-off becomes very sensitive and 
important in case of prognostic decision making for cancer 
treatment. Such data analysis systems, intended to assist a 
physician, are highly desirable to be accurate, human 
interpretable and balanced, with a degree of confidence 
associated with final decision. Accuracy and 
interpretability are highly conflicting requirements; since 
complexity of system usually increases as a result of 
accuracy maximization, resulting in reduced 
comprehensibility of system’s overall behavior. 
“Improving accuracy while preserving interpretability” is 
a challenging research issue being actively pursued by 
designers of decision support systems (Gonzalez et al. 
2007, Rafael et al. 2006, Ralf et al. 2004, Cristina and 
Louis 2004). This trade-off is one of the basic motivational 
factors behind the model presented in this paper. As 
mentioned earlier, majority of research efforts in breast 
cancer diagnosis and prognosis used neural networks 
(Joseph et al. 2006). This is because relative ease in their 
use, abilities to provide gradual responses and good 
classification performance. But in prognostic decision 
making systems where physicians want to understand and 
justify the decisions, they act totally as “Black Boxes” 
with poor interpretability because it is difficult for humans 
to interpret the symbolic meaning behind the learned 
weights. Moreover, neural network learning with too 
many attributes, as in case of breast cancer data (SEER 
1973-2003), can result in over-fitting (Joseph et al. 2006). 

Unlike neural network, decision trees have always been 
praised for comprehensibility of their knowledge 
representation and inference procedures. They have been 
shown to be problem independent and able to treat large 
scale industrial applications (Cristina and Louis 2003). 
Pruned decision tree effectively overcomes over-fitting 
problem when dealing with large number of attributes 
(Joseph et al. 2006). The fundamental weakness of 
decision trees is that the decision boundaries are sharp at 
each node (for continuous valued attributes), due to which 
even small changes in attribute values may result in 
misclassifications (Crockett et al 2006, Cristina and Louis 
2003). That is why; they are recognized to be unstable, 
with high variance. Therefore, decision boundaries need to 
be softened and there should be a gradual transition 
between attribute values. Here comes the role of fuzzy 

logic, as explained next.  
Based upon above mentioned observations, we propose 

to investigate a hybrid scheme based on weighted fuzzy 
decision trees (wFDT), as an efficient alternative to crisp 
classifiers that are applied independently. Fuzzy sets, 
along with fuzzy logic and approximate reasoning 
methods, provide the ability to model fine knowledge 
details (Lotfi A. Zadeh 1983). Accordingly, fuzzy 
representation is becoming increasingly popular in dealing 
with problems of uncertainty, noise, and inexact data 
(Cezary Z. Janikow 1998). That is why we believe, it can 
act as natural ally of physicians. To help decision trees, the 
role of fuzzy logic becomes very crucial in softening the 
sharp decision boundaries because of the elasticity of 
fuzzy sets formalism. An important aspect of this model is 
an interesting simultaneous cooperation between Fuzzy 
Logic and Decision Trees. This bidirectional cooperation 
tries to soften the accuracy/interpretability trade-off, and 
can be realized as follows: 

1. Fuzzy representation, with its approximate 
reasoning handles uncertainty and gradual 
processing to help soften the crisp decision tree 
boundaries. This results in reduced 
misclassifications and increased accuracy. 

2. There are two approaches of fuzzy modelling (FM) 
depending on problem domain (Rafael et al 2006): 

 Linguistic FM: based on Linguistic 
(Mamdani 1974) fuzzy rule based systems. 
These systems have high interpretability but 
strive to achieve improved accuracy.  

 Precise FM: based on Takagi-Sugeno 1985 
fuzzy rule based systems. Such systems 
focus on accuracy but lack in interpretability. 

Figure-1 describes how linguistic and precise 
fuzzy modelling tend to achieve required optimal. 
For breast cancer prognosis problem, precise 
fuzzy modelling is used i.e. rules are in the form 
of Takagi-Sugeno 1985. Therefore, such systems 
lack in interpretability and need to achieve an 
optimal level of comprehensibility. In this case, 
decision trees will help such fuzzy representation.  

 

 
Figure 1: Precise fuzzy modelling tends to achieve 
optimal interpretability (Rafael et al. 2006) 

Fuzzy decision tree (FDT) IF-THEN rules for an 
m-class pattern classification problem with ‘n’ attributes 
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can be written as: 
 

 
 

where x = (x1, x2,…,xn)  n-dimensional pattern vector,  
Aij is antecedent Precise fuzzy set (like <30, >=30),  
Ci Consequent class (one of the given m-classes in labelled 
date), 
N is the number rules used in a particular model. 
 

Effect of rule weights on fuzzy decision trees is 
analysed using certainty grade concept. It determines the 
degree of confidence in the decision of a particular rule. A 
FDT rule with an associated certainty grade can be written 
as: 

 
 
 
Usually, CFi is a real number in unit interval 
( 10 ≤≤CFi ). A special rule weighting technique is used 
which learns certainty grades from training data. Using 
certainty grade, compatibility of each rule is calculated for 
each incoming input record to be classified. The most 
compatible rule for a particular input record decides its 
final class. Effect of this weighting is investigated to be an 
alternative to membership function optimization. A 
significant performance enhancement is achieved by 
weighting rules, which also helps oncologists to have 
certain degree of confidence in the final decision.   

The overall aim of this research is to determine the 
potential of wFDTs for prediction of breast cancer 
survivability in particular, and breast cancer prognosis in 
general. wFDT is studied in detail and compared with FDT 
and crisp decision tree. Experiments were performed 
rigorously using different combinations of: number of 
rules in a model, types of fuzzy membership functions and 
inference techniques. Results show that wFDT achieved 
much improved prediction accuracy and much reduced 
variance, as compared with crisp decision tree.  

Rest of the paper is organized as follows: section 2 
presents the related work, section 3 describes materials 
and methods used in this research, section 4 presents the 
experimental evaluations and finally section 5 concludes 
this manuscript.  

2 Related Work 
 
In (Joseph et al. 2006), authors conducted a broad survey 
of the different types of machine learning methods being 
used, the types of data being integrated and the 
performance of these methods in breast cancer prediction 
and prognosis. To get possible research directions in 
application of machine learning techniques for cancer 
prognosis, this survey is the only detailed manuscript (by 
date) especially for researchers new to this application 
area. In (Dursun et al. 2004), a comparison between two 
data mining techniques namely decision trees and neural 
networks and a statistical method namely logistic 
regression, is presented. These techniques were applied 
independently on SEER breast cancer data (SEER 

1973-2003) to predict survivability. This research effort 
concluded that decision trees proved to be the best 
classifier in that experimental environment. We propose 
that this performance can be extensively increased using 
weighted and fuzzified decision tree i.e. wFDT. This was 
another reason (besides others mentioned earlier) to select 
decision trees for constructing crisp rule base.  

In (Carlos and Moshe 1999), fuzzy rules for cancer 
diagnosis are generated by randomly selecting data 
instances from training data, and performing rigorous 
genetic search evolving different models and then 
selecting the best ones. According to our approach, an 
efficient and well tested classifier can be used to build 
initial rule base, avoiding complexities and optimization 
errors due to random selection of training records. 
Moreover, rigorous and repetitive genetic search through a 
realistically huge cancer patient data (like one used in this 
research) would result in tedious time and memory 
complexities.  

In recent research efforts for cancer prediction (Ilias et 
al. 2007 and Leonardo et al 2007), support vector machine 
(SVM) and neural network (ANN) modelling were 
performed. In both the cases, main focus was accuracy and 
no doubt, they would have achieved “high peaks” of 
accuracy. But a clinician, involved in sensitive decision 
making about a patient’s treatment, demand more than 
that. Factors including interpretability, system’s ability to 
adopt human reasoning behaviour to deal with 
uncertainties and performance consistency were ignored. 

Let us review research efforts specifically focused on 
hybridization of fuzzy logic and decision trees, other than 
cancer prediction domain. To cope with sharp decision 
boundaries problem, a number of approaches (Cristina and 
Louis 2003, C.Z Janikow 1999 and 2004, C.W. Olaru 2003 
and Yuan et al. 1995) have made use of fuzzy theory to 
create fuzzy trees. In (Webb and Ting 2005, Umano et al. 
1994) fuzzy tree is induced directly from pre-fuzzified 
data. The difference between these approaches and the one 
used in this manuscript is that, they focus on modification 
of decision tree pruning algorithm and require fuzzy 
parameters to be set by domain experts. Here fuzzy sets 
produced can be the outcome of subjective perception. 
This way an additional aspect of uncertainty is introduced 
in the system, when there are conflicting opinions between 
domain experts. In (Crockett et al. 2006), a similar 
architecture is proposed in which pre-constructed tree is 
fuzzified without modifying ID3 algorithm. But the rule 
weighing technique in their inference procedure is very 
trivial and they did not focus on analysing the strength of 
certainty grades in system’s performance and 
comprehensibility.  

Effect of rule weights in fuzzy rule-based classification 
systems is examined in (Hisao and Tomoharu 2001). They 
presented an effective analysis of applying rule weights as 
an efficient alternative to membership function learning 
and optimization. Effect of certainty grades on the 
decision areas of fuzzy rules is illustrated. The larger the 
certainty grade of a rule, the larger will be its decision area. 
Their experiments are focused on linguistic values of fixed 
membership functions. In this work, we have shown the 
same effect on precise fuzzy modelling, in section 4.   

 

Rule Ri: If  x1 is Ai1  AND  x2 is Ai2  AND……AND  xn is Ain    

                     THEN Class Ci   i = 1,2,…..N     

Rule Ri: If  x1 is Ai1  AND  x2 is Ai2  AND……AND     
              xn is Ain  THEN  Class Ci  with CFi  i = 1,2,…..N   
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3 Materials and Methods 
 

3.1  Prognostic and Predictive Factors in Breast 
Cancer 

Survival of patients with breast cancer depends on two 
different types of prognostic factors: 1) Chronological 
[indicators of how long the cancer has been present (e.g. 
tumor size)], 2) Biological [indicators of metastatic 
aggressive behaviour of a tumour (e.g. tumor grade)] as 
described in (Bundred N.J. 2001). They determine, either 
or not a particular tumor might respond to a specific 
therapy. Definitions and effects of some of the most 
important prognostic factors in breast cancer are given 
below:  
Lymph node status: Lymph nodes, where cancer cells get 
accumulated (usually under the arm pits). Both number of 
nodes and level of involvement worsen the prognosis. If 
the lymph nodes accumulate cancerous cells, they are 
called positive nodes, otherwise negative.  
Stage: Defined by the size of tumor and its spread. 
Survival is inversely proportion to size of tumor. The 
probability of long-term survival is better with smaller 
tumors than with larger tumors (Bundred N.J. 2001). Let 
us see some examples of breast cancer stage from 
(National Cancer Institute 2008).  

1. Stage-1 is an early stage of invasive cancer. 
Tumor is no more than 2 cm. Cancer cells 
remained inside breast. 

2. In Stage-2, tumor size can be from 2-5 cm. 
Cancer cells may or may not spread out of breast. 

Similarly, there in total four types of stages (further 
divided into many sub-types), in which tumor size keeps 
on increasing along with spreading of cancer cells. Higher 
the stage, difficult is survival.   
Grade: How does the tumor look like and its resemblance 
to more or less aggressive tumors. Histological grade is a 
combination of mitotic rate, nuclear grade and 
architectural morphological appearance (Rampaul 2001). 
Here also, patients with grade-1 tumor have higher 
chances of survival than patients of grade-3. 

Figure-1 shows ranking of survivability attributes in 
terms of their decisive strength, calculated using 
information gain (IG) applied to breast cancer data, as 
described in subsection 3.3. 

Ranked Survivability Attributes
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Figure 2: Ranked Survivability Attributes 

3.2 Data  
In this research work, SEER (Surveillance, Epidemiology, 
and End Results) data (1973-2003) is used for breast 
cancer prognosis. Files were requested through website 
(www.seer.cancer.gov) of SEER program which is a part 
of Surveillance Research Program at National Cancer 
Institute. The data set is considered to be the most 
comprehensive source of information on cancer incidence 
in USA and SEER program claims quality and 
completeness of data. A search for term ‘SEER’ on 
PUBMED (National Library of Medicine’s database), 
gives a list of more than 1500 publications for the time 
period of 1978-2008.  
Initially, there were 505,367 records each with 86 
variables. These variables describe socio-demographic 
and cancer-specific information of an incidence of cancer. 
We used Clementine data analysis tool for all 
preprocessing mentioned below. Considering the aim of 
survival prediction, a binary target variable is created with 
values 0 (did not survive) and 1 (survived). To calculate 
this variable, ‘SurvivalTimeRecode’ field is used which 
provides number of years and months of survival after 
diagnosis. Although much of the time in this research work 
was spent on data cleansing and preprocessing, only a brief 
description is given here. To adjust the survival rate, those 
records were removed in which patient died within 5 years 
after diagnosis and the cause of death was not breast 
cancer.  

SEER used the same database schema for the data of all 
anatomical sites (like breast, throat, urinary etc.). So there 
were many attributes which are common to all cancer 
types and not specific to breast cancer. Moreover, some 
redundant variables like recodes and overrides were also 
removed. For instance, Extent_of_Disease variable 
aggregates tumor size, # of nodes examined, # of positive 
nodes examined, lymph node involvement and clinical 
extension of tumor.   

Other than this, variables that had more than 70.0% 
missing values, categorical variables that had a single 
category accounting for more than 90.0% of cases, 
continuous variables that had standard deviation less than 
0.1%, and continuous variables that had a coefficient of 
variation (SD/mean) less than 0, were also removed. For 
input variable selection, we tried to limit the number of 
variables and selected only the clinically relevant 
variables. But for some variables like Stage, 40% of 
records contained missing values. Since this variable is an 
important predictor of survivability, instead of deleting 
whole column, only records containing missing values for 
this variable were removed.  

After an exhaustive pre-processing, final data set with 
162500 records, 16 predictor variables and 1 target 
variable, was constructed. The target variable ‘IsSurvival’ 
is a binary categorical variable with possible values ‘0’ 
(did not survive) and ‘1’ (survived). Table-1 shows the 
predictive variables and their descriptions, used in our 
work: 
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Table 1: Breast Cancer Predictive Factors used for 
Survivability Prediction 

Following table shows the important statistics related to 
above mentioned prognostic factors in training data. Here 
symbol is assigned to recognize each feature, in the order it 
appears in training record i.e. Age (A) comes first and 
number of primaries (P) appears last in training record. 

 

Symbol Nominal Variable 
Name Num of Distinct Values 

B  Race 28 
C  Marital Status 9 
D Primary Site 9 
E HistologicTypeICD 44 
F Behaviour Code 2 
G Grade 5 
I Extension of Tumor 12 
J Node Involvement 10 
M Site Specific Surgery 22 
N Radiation 9 
O Stage 9 

Symbol Numeric Variable 
Name Mean Std.Dev Range 

A Age at Diagnosis 61.105 14.165 20-106 
K Num of Pos Nodes 24.376 41.238 0-99 
H Tumor Size 103.16

8 
273.144 0-999 

L Num of Nodes 14.033 16.89 0-99 
P Num of Primaries 1.302 0.565 1-6 

Table 2: Statistical Description of Predictor Variables 

3.3 Decision Trees 
 
Decision tree techniques have always been popular 

for extracting rules from domain knowledge to classify 
objects. As mentioned above, to generate fuzzy rules, we 
opted to use decision trees in the first step of modeling. 
We used binary C4.5 for all the experiments mentioned 
in this manuscript. A brief description of its working is 
given here. To partition the data at each stage of tree, a 
test is performed to select an attribute with lowest 
entropy. Information gain (IG) is used as a measure of 
entropy (H) difference when an attribute contributes the 
additional information about class C (Witten and Frank 
2005).  

 
H(C) = -∑p(c) logp(c)     , c Є C            (1) 

H (C|Xi) = -∑p(x) [ ∑p(c|x)log p(c|x) ], xЄXi, cЄC (2) 

IGi = H(C) - H (C|Xi)                                   (3) 

In equation (1), p(c) is the probability that an arbitrary 
sample belongs to class ‘c’.  Equation (2) shows the 
entropy after observing the attribute Xi for the class ‘c’ 
and ‘p(c|x)’ is the probability that a sample in attribute 
branch Xi belongs to class ‘c’. We used binary decision 
tree because it has been proved in previous research (H. 
Al-Attar 1996, J.R. Quinlan 1990) that they usually 
outperform the multi-branch trees generated by the 
original ID3 algorithm. To cater for over fitting problem, 
the constructed tree is optimized in size using pruning. 
During experiments, we generated different decision tree 
models, and analysed the following trend.  
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Figure 3: Rules per Model and Accuracy 

As shown in figure-3, with a maximum complexity we 
got maximum accuracy. But for a model with 20 rules to a 
model with 8 rules, we got the almost similar value of 
accuracy i.e. around 82%. This trade-off is explained 
below.  

3.3.1 C4.5 Limitations, Interpretability and 
Model Selection 

As described earlier, the fundamental weakness of crisp 
C4.5 decision tree is that the induced tree will have sharp 
decision boundaries at each node. In case of continuous 
attributes, even small changes in attribute values may 
result in misclassifications. In (Quinlan 1990 

Field  Description 
Stage Defined by the size of cancer tumor and its 

spread 

Grade 
How does the tumor looks like and its 
resemblance to more or less aggressive 
tumors. 

Lymph Node 
Involvement 

None, (1-3) Minimal, (4-9) Significant etc 

Race Ethnicity like White, Black, Chinese etc. 
Age at Diagnosis Actual age of patient in years 

Marital Status Married, Single, Divorced, Widowed, 
Separated 

Primary Site 
Presence of tumor at a particular location 
in body.  Topographical classification of 
cancer 

Tumor Size 2-5 cm, at 5cm prognosis worsens 

Site Specific Surgery 
Information on surgery during first course 
of therapy whether it was cancer directed 
or not. 

Radiation None, Beam Radiation, Radioisotopes, 
Refused, Recommended etc.  

Histological Type The form and structure of tumor 

Behavior Code Normal or aggressive behaviour of tumor 
have been defined in codes.  

# of Positive Nodes 
Examined 

When the lymph nodes are involved in the 
cancer, they are called "positive." 

# of Nodes Examined Total nodes (positive/negative) examined 
# of Primaries Number of primary tumors (1-6) 

Clinical Extension of 
Tumor 

Defines the spread of tumor relative to 
breast 

IsSurvival Target binary variable defines the class of 
survival of patient.  
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R1: IF ClinicalExtensionOfTumor <= 40.0 AND AgeAtDiagnosis <= 73.0 THEN IsSurvival = YES

R2: IF ClinicalExtensionOfTumor <= 40.0 AND AgeAtDiagnosis > 73.0 AND AgeAtDiagnosis <= 83.0 And LymphNodeInvolvement <= 1.0   
THEN IsSurvival = YES

R3: IF ClinicalExtensionOfTumor <= 40.0 AND AgeAtDiagnosis > 73.0 AND AgeAtDiagnosis <= 83.0 And LymphNodeInvolvement > 1.0   
AND NumOfPositiveNodesExamined <= 5.0 THEN IsSurvival = YES

R4: IF ClinicalExtensionOfTumor <= 40.0 AND AgeAtDiagnosis > 73.0 AND AgeAtDiagnosis <= 83.0 And LymphNodeInvolvement > 1.0  
AND NumOfPositiveNodesExamined > 5.0 THEN IsSurvival = NO

R5: IF ClinicalExtensionOfTumor <= 40.0 AND AgeAtDiagnosis > 73.0 AND AgeAtDiagnosis > 83.0 AND AJCCStage3ed <= 10.0 AND 
AgeAtDiagnosis <= 85.0 THEN IsSurvival = YES

R6: IF ClinicalExtensionOfTumor <= 40.0 AND AgeAtDiagnosis > 73.0 AND AgeAtDiagnosis > 83.0 AND AJCCStage3ed <= 10.0 AND     
AgeAtDiagnosis > 85.0 THEN IsSurvival = NO

R7: IF ClinicalExtensionOfTumor <= 40.0 AND AgeAtDiagnosis > 73.0 AND AgeAtDiagnosis > 83.0 AND AJCCStage3ed > 10.0 THEN   
IsSurvival = NO

R8: IF ClinicalExtensionOfTumor > 40.0 THEN IsSurvival = NO
 

Figure 4: Least Complex Model for Interpretability

and Carter et al. 1987), some threshold softening 
approaches are considered for categorical and continuous 
attributes. But the results related to splitting of continuous 
attributes do not show significant improvement (Quinlan 
1996). The trade-off presented in figure-3, gets harder due 
to sharp decision boundaries. For a physician involved in 
prognostic decision making, both accuracy and 
interpretability are a must. So we decided to choose 
interpretability first and leave the accuracy and decision 
confidence for the second stage. 

Although it is difficult to give a precise definition of 
interpretability, many researchers like (Ralf et al. 2005, 
Bodenhofer and Bauer 2002, Cordon and Herrera 2000, 
Jin et al. 1998) have agreed on interpretability involving 
following aspects:  

1. Number of rules should be small enough to be 
comprehensible. 

2. Rule antecedents and consequents should be in 
easy in structure and it should contain only few 
features.  

3. Rule base should be consistent i.e. similar 
antecedents should produce similar consequents. 

4. Fuzzy system should use features familiar to 
users.  

5. The inference mechanism should produce 
technically and intuitively correct results.   

Based on above recommendations, out of different models 
generated during experiments, we have chosen the 8-rules 
least complex model shown in figure-4. This is because 
from models with 20 rules to model with 8 rules, accuracy 
remained almost same, as shown in figure-3. Hence, we 
decided to choose simplest model with 8 rules and an 
acceptable accuracy 81.5%, to act as base model for FDT 
and wFDT in next section. Note that, this model contains 
most decisive factors ranked using Information Gain i.e. 
extension of tumor, stage, lymph node involvement and 
positive nodes examined as shown in figure-2. Age also 
gives a strong idea about survival since it is easier to 
recover in young age. 

3.4 Weighted Fuzzy Decision Trees (wFDT) 
In continuation of previous section, we already have an 

induced crisp decision tree, which partitions the input and 
output space into n-dimensional space where ‘n’ is total 
number of attributes. To convert a sharp transition at 
decision node into a gradual one, fuzzification is applied to 
both branches of a decision node (since we are using a 
binary decision tree). Figure-5 gives a simple and clear 
idea of crisp and fuzzy classes visually.  
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Figure 5: Difference between Crisp & Fuzzy Sets 

In figure-5, ‘x ± b’ is a relaxation applied to crisp 
threshold. To do this, an attribute or decision node is 
represented by a fuzzy set using a pair of complimentary 
membership functions M1 and M2, as elaborated in 
figure-6.   
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Figure 6: Complimentary Membership Functions over 

domain δi and δn   

Fuzzy region is defined around a crisp threshold ‘dt’, 
already defined at each decision node or attribute by C4.5 
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algorithm. A membership function defines degree of 
membership μ (x), of a particular input value ‘x’, into a 
fuzzy set. This degree lies in the range 0 to 1, with μ(x)=0 
means ‘no membership’ and  μ(x)=1 means ‘full 
membership’. Membership degree or value is a key 
concept which ensures that sharp transition concept ceases 
to exist. Some examples of membership functions will be 
explained later in this section. Although there can be many 
smart ways to initially specify the domain, lower bound 
‘δi’ and upper bound ‘δn’ of a membership function, we 
stick to a common and simplified domain specification. 
Since decision threshold ‘dt’ is already generated at each 
node of DT and remains fixed, domain delimiters can be 
calculated as: 

δi =   dt – f *σ   and   δn = dt + f *σ      (4) 
 
here δi and  δn are lower and upper bounds of membership 
function, respectively. ‘σ’ is the standard deviation of the 
domain attribute. It determines how tightly an attribute’s 
values are bound around its mean value. It helps in 
guessing what proportion of an attribute would be assigned 
partial membership degree. ‘f’ is the fuzzification applied 
around decision threshold ‘dt’. Studies have shown 
empirically that ‘f’ is usually chosen in the domain ‘0-5’. 
This is because larger values of ‘f’ would introduce too 
much fuzzification and decision making process would 
become unclear. For our experiments, ‘f’=2 gave the 
optimal results.  
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Figure 7: Fuzzified Decision Tree 

A portion of fuzzified decision tree is shown in Figure-7 It 
describes how an attribute at each node is fuzzified using 
left and right complimentary membership functions (M1, 
M2). Crisp rules R1 and R8, in figure-4, can be obtained in 
fuzzified form by traversing the left most and right most 
paths of the tree in figure-7. An important feature of this 

approach is that, it preserves the decision thresholds and 
symbolic structure obtained from induced tree. 

3.4.1 Fuzzy Inference 
 
The approach used is very simple and interesting in a way 
that, for classifying an example, all the rules contribute 
their knowledge to some degree. A brief description is 
given below: (for classification of an incoming record) 

1. For each path (or rule) of the fuzzy decision tree, a 
cumulative membership grade is calculated by 
applying an intersection operator (like Yager or 
Zadeh operator) to the set of individual membership 
function values at each branch on that path. For 
example, cumulative membership grade of first rule 
R1(left most path from root to leaf, in figure-7) is 
computed as: 

 
μ (R1) = ∩ {µI1M1 (x9), µA1M1(x1)}   (5) 

      
Here ‘µI1M1(x9)’ is the membership function of fuzzy set 
“ExtensionOfTumor <=40”. ‘I1’ means first occurrence of 
‘ExtensionOfTumor’ node in tree. ‘M1’ means this 
function is left complimentary function. ‘x9’ is 
‘ExtensionOfTumor’ value in input record. This 
membership function will compute membership value of 
the input record, for a particular branch in rule path.   Now 
we have 8 cumulative membership grades. Each of such 
grades is multiplied by the rule weight or certainty factor 
CFi. Section 3.4.3 explains in detail about the computation 
of CF and its effect on fuzzy rule based classification 
system. This weight is calculated for each rule using 
training data. Rule weight has a great significance in fuzzy 
inference and here it is used as an alternative of Genetic 
Algorithms for parameter optimization.    

2. Finally, all the products (μ (Ri)*CFi) are combined 
using union operator, and a rule (e.g. Zadeh) or a 
class (e.g. Yager) with maximum membership 
grade, will decide the class of incoming record. 

 
Decision=∪{μ(R1)*CF1 , μ(R2)*CF2 , ... μ (R8)*CF8} 
                                                                                     (6) 

We used Yager and Zadeh (Witten and Frank 2005) 
inference operators for intersection and union.  

3.4.2 Fuzzy Membership Functions 
 
We have used different types of fuzzy membership 
functions like Linear, sigmoid, convex and concave 
membership functions (Earl Cox 1994) to evaluate 
wFDTs. A brief description of these membership functions 
is given below:  
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Figure 8: Linear Membership Function 

Here ‘x’ is the input value of an attribute. ‘δi’ generates 
zero membership while ‘δn’ generates maximum 
membership i.e. ‘1’. Both ‘δi’ and ‘δn’ are computed from 
equation-4.  
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Figure 9: Sigmoid Membership Function 

Here β  is defined as half membership point (δi + δn )/2. It 
represents known distribution of sample space, and 
assumed to be ‘dt =β ’. Fuzzification gets to its maximum 
as ‘x’ gets closer to ‘δn’. 
   

Convex (δi, δn, x) = [ ( ) ]
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Concave (δi, δn, x) = ( )
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Figure 10: Convex (Left) and Concave (Right) 

Membership Function 

In convex membership function, the membership grade at 
point of intersection is significantly less than 0.5. As the 
value of ‘x’ equals ‘dt’, membership would be low in both 
M1 and M2 representing low confidence in both child 
branches of decision node in binary tree.    

Concave membership function assigns higher 
membership grade to the branching threshold, which 
implies strong confidence in both child branches of 
decision node.  

3.4.3 Effect of Weights on Fuzzy Rules 
 
In this section, we have discussed a very important and 

significant aspect of wFDT modelling. Effect of weights, 
learnt from data, on fuzzy rule base is analysed. For the 
performance enhancement of fuzzy rule based systems, 
there has always been a room for membership function 
optimization through learning or other adjustment 
techniques. This analysis is based on an argument that 
learning of certainty grades (rule weights) can partially 
replace the adjustment of membership function. A few 
aspects of this analysis are referenced from (Hisao and 
Tomoharu 2001, Nauck and Kruse 1998) in which they 
discussed rule weighing for linguistic fuzzy modelling.  

This concept is based on an assumption that modifying a 
membership function can deteriorate the 
comprehensibility of fuzzy classification system. It can 
also introduce a gap between modified membership 
function and expert’s knowledge about that function. On 
the other hand, learning single real number is a relatively 
easier task, and it improves the classification accuracy of 
fuzzy rule based system. Another significant importance is 
that it represents the strength of each rule, in other words 
the confidence in rule’s decision. This would help 
physician in establishing his confidence in a particular 
rule.  

In fuzzy rule based systems where inference is based on 
one winner rule classification, if certainty grades are not 
used, the rule with maximum compatibility grade 
(membership value) for a record to be classified, decides 
the class (detailed inference mechanism is described in 
next section). Following expression formulize this 
concept. 

μj*(X) = max (μj(X) | j=1,2…N)       (7) 
This expression simply shows that the rule with maximum 
membership value for an input record ‘X’, will decide its 
class. ‘N’ is total number of rules. Based on this, each rule 
has a particular decision area as shown in figure-11. 

 
Figure 11: Decision area of fuzzy rules (Hisao et al. 

2001)  
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Decision areas of rules without certainty grades are proved 
to be rectangular (Kenchuva 2000). These decision areas 
can be modified and adapted, by learning certainty grades 
(rule weights) from data, to alternatively affect the 
membership functions without explicitly modifying them. 
Modified decision areas will automatically result in 
modified class boundaries. Figure-12 shows the effect of 
certainty grade on fuzzy sets.  

Good Prognosis Poor Prognosis

Medium

CFi =1.0 CFi =1.0CFi =0.5

Good Prognosis Poor Prognosis

Medium

CFi =1.0 CFi =1.0CFi =0.5  
Figure 12: Effect of Certainty Grade on Fuzzy Set 

The red dashed line shows the product of compatibility 
grade and certainty factor (CF) of a rule which modified 
class boundary. Now the rule with maximum of this 
product will be the winner as expressed by the following 
equation: 
μj*(X)CFj* = max (μj(X)CFj | j=1,2…N)       (8) 
 
Certainty grades or rule weights are calculated for each 
rule as:  
 

1. When consequent class of Rule is YES (or 1) 
 
 

CFi = 
 

                                                                             (9) 
2. When consequent class of Rule is NO (or 0) 

 
CFi = 
 
                                                                                    (10) 
Where   ( )∑

∈

⎟
⎠
⎞⎜

⎝
⎛ ==

ClassKx
iiClassK NOYESkxR ,,μβ  

 
In simple words, for each rule ‘Ri’ its combined 

membership value for all the training patterns of class 
‘YES’ ( ⎟

⎠
⎞⎜

⎝
⎛ iClassYES Rβ ), and its combined membership 

value for all the training patterns of class ‘NO’ 
( ⎟

⎠
⎞⎜

⎝
⎛ iClassNO Rβ ) is computed to get its certainty grade using 

above equations. Certainty grade values lies in the 
range 10 ≤≤ iCF , which means when all compatible 
patterns with rule Ri (those with ( )xiμ  >0 for Ri) belong 
to the same class, CFi equals one. 

This analysis, resulted in significantly increased 
performance, as mentioned in next section.  

 
 
 
 
 

4 Performance Evaluation 
 

Experiments were performed using WEKA, Matlab and 
Java on a Pentium PC at 1.7GHz with 1.5GB RAM. 
Execution time for calculating decision tree with different 
kernel functions varied for 6 to 12 seconds. Out of 162500 
records, 30000 records as training and 10600 as test data 
were obtained using uniform random selection, taking into 
account the overlapping factor (stratified sampling).  

4.1 Accuracy, Sensitivity and Specificity 
In this study, we have used following three performance 
measures: 

Accuracy =
FNFPTNTP

TNTP

+++

+
   (11) 

        Sensitivity   =  
FNTP

TP

+
                            (12) 

        Specificity = 
FPTN

TN

+
                                (13) 

where TP, TN, FP and FN denotes true positives, true 
negatives, false positives and false negatives, respectively.   

4.2 10-Fold Cross Validation 
 
k-Fold cross validation is used to minimize the bias 

associated with random sampling of training and test data 
samples in comparing predictive accuracy of two or more 
methods (Dursun et al. 2004). Here the whole data set is 
randomly split into ‘k’ mutually exclusive subsets of 
approximately equal size. Classification model is trained 
and tested k times. Each time it is trained on all but one 
fold. For example, we used 10-fold cross validation 
because empirical studies (Kohavi 1995, Breiman et al. 
1984) have shown that 10 folds are appropriate to optimize 
the testing time and minimize the bias and variance 
associated with validation process. In this case, data is split 
into 10 mutually exclusive subsets (using stratified 
sampling). Each of these 10 folds is used once to test 
performance of classifier, while other 9 are used for 
training.  

 
Figure 13: 10-Fold Cross Validation (Dursun et al.) 

Cross validation estimate of classifier’s overall accuracy is 
calculated by simply taking the mean of ‘k’ individual 
accuracy measures. Table-3 shows the 10-fold cross 
validation estimates of crisp decision trees, fuzzy decision 
trees (FDT) and weighted fuzzy decision trees.  
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Results in table-3, describe significant and consistent 
performance enhancement using wFDT as compared with 
crisp decision trees. Figure-13, describe the Receiver 
Operating Characteristics (ROC) for FDT (blue) and 
wFDT (red).    
 

 
Figure 14: ROC Curve Analysis of FDT and wFDT 

 
 
 
 
 

Table 4: AUC Measures 
 
In the results presented in table-3, the variance of crisp 

decision tree and weighted fuzzy decision trees needs to 
be analysed. There is an obvious uncertainty in crisp 
decision tree performance. On the other hand, the 
estimations of FDT and wFDT are consistent through out 
the 10 folds. This high variance of decision tree 
estimations is due to sharp, inflexible decision boundaries.  
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Figure 15: Sensitivity Specificity Product 

Figure-14 graphically depicts the value of wFDT to a 
clinician who is now confident about the survival chances 
of patient, with such a high sensitivity specificity product. 
Again consistency (variance) of three curves should also 
be noticed.  

The effect of weights on the performance of fuzzy 

decision trees has become obvious. There is a significant 
increase in accuracy of wFDT as compared to FDT. High 
performance of wFDT in terms of specificity proves its 
robustness specially when there is some bias like ‘class 
imbalance problem’ or variance due to sampling bias. 
Table-5 shows that wFDT performed best for Yager 
inference and sigmoid membership function.  

 

Table 3: Average Error Rate on Unseen Date for 
wFDT 

Performance comparisons suggests that weighted fuzzy 
decision trees have good compatibility with all the 
requirements and features of an accurate and 
comprehensible prognostic decision making system, 
mentioned in introduction and related work sections. 
 

5 Conclusion 
 

In this paper, we have shared our experiences of 
investigating intelligent machine learning techniques for 
breast cancer prognosis analysis. We analyzed the 
possible potential of fuzzy logic based classifiers, and 
came up with a conclusion that they are fit to act as natural 
allies of a physician involved in predictive medicine. 
Moreover, they can proficiently manage contrasting 
requirements of accuracy, interpretability and balance in 
decision. When we say balance, obviously it is not crisp. 
Interesting cooperation between DTs and Fuzzy theory 
helps to realize this aim.  
       After these experiments, we outlined some future 
dimensions which can help wFDTs to prove their potential 
as a strong classifier and predictor in cancer prognosis. 
Optimization through rule weights or genetic algorithms; 
an analysis is required, since rule weights, domain 
delimiters and inference parameters are the key players 
affecting accuracy. Cooperation among rules in decision 
making process can also be a good area research in this 
perspective.  
      We are committed to explore the strengths of wFDTs 
for personalized predictive medicine, which is indeed a 
growing trend in personalized healthcare. 
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FDT 0.69 
wFDT 0.77 

Inference 
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YAGER 10.45 10.02 12.07 12.75 
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