
  

  

Abstract—Data analysis systems, intended to assist a 

physician, are highly desirable to be accurate, human 

interpretable and balanced, with a degree of confidence 

associated with final decision. In cancer prognosis, such 

systems estimate recurrence of disease and predict survival of 

patient; hence resulting in improved patient management. To 

develop such a prognostic system, this paper proposes to 

investigate a hybrid scheme based on fuzzy decision trees, as an 

efficient alternative to crisp classifiers that are applied 

independently. Experiments were performed using different 

combinations of: number of decision tree rules, types of fuzzy 

membership functions and inference techniques. For this 

purpose, SEER breast cancer data set (1973-2003), the most 

comprehensible source of information on cancer incidence in 

United States, is considered. Performance comparisons suggest 

that, for cancer prognosis, hybrid fuzzy decision tree 

classification is more robust and balanced than independently 

applied crisp classification; moreover it has a potential to adapt 

for significant performance enhancement. 

I. INTRODUCTION 

CCORDING to National Cancer Institute of United States, 

estimated number of breast cancer cases, registered for 

the year 2007 is 180510, while the estimation of deaths 

exceeds 41000 [1]. Approximately, at the rate of one in three 

cancers diagnosed, breast cancer is the most frequently 

diagnosed cancer in women in America. Surgical biopsies 

confirm malignancy with high level of sensitivity, but are 

considered costly and can affect patient’s psychology as well 

[2]. If malignancy is confirmed, physicians get indulged into 

prognosis. Surgery, radiation, chemotherapy, hormone 

therapy or any combination of them are considered to be the 

successful treatment methods. But again, selection of 

treatment method without considering resulting tumor 

behavior can lead to severe consequences. Towards these 
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considerations, there is a growing trend of personalized 

predictive medicine using less invasive machine learning 

techniques. Prognosis helps in establishing a treatment plan 

by predicting the outcome of a disease. There are three 

predictive foci of cancer prognosis: 1) prediction of cancer 

susceptibility (risk assessment), 2) prediction of cancer 

recurrence and 3) prediction of cancer survivability. Focus 

of this paper is prediction of survivability, of a particular 

patient suffering from breast cancer, over a particular time 

period after the diagnosis. For this research effort, survival is 

considered as any incidence of breast cancer where the 

person is still living after 1825 days (5 years) from the date 

of diagnosis, as recommended in [3,4]. 

      In the present research project, we surveyed various 

research efforts [5-8] in the application of different machine 

learning techniques to cancer prognosis. Some of the 

obvious trends which account for the motivation of 

experiments presented in this manuscript include: 

• Fuzzy logic has been rarely used in cancer prognosis. 

Being non-crisp, it can act as a natural ally of a 

physician in prognostic decision making process. 

• About 70% of all reported studies use Neural 

Networks which yield “Black Box” models for 

physicians to interpret.  

• Majority of reported studies used machine learning 

techniques independently without considering 

potential in those techniques to cooperate with each 

other in a hybrid model. 

• Lack of attention paid to data size. Data sets 

considered are not sufficiently large that can be 

reasonably partitioned into disjoint training and test 

sets.  

Being motivated by above mentioned trends, we propose to 

investigate a hybrid scheme based on fuzzy decision trees, as 

an efficient alternative to crisp classifiers that are applied 

independently. An important aspect of this model is an 

interesting simultaneous cooperation between Fuzzy Logic 

and Decision Trees. This cooperation tries to soften the 

accuracy/interpretability tradeoff. In [5], fuzzy rules, for 

cancer diagnosis, are generated by randomly selecting data 

instances from training data, and performing rigorous 

genetic search evolving different models and then selecting 

the best ones. We have chosen to investigate a different 

alternative by using decision trees, in step-1, to learn a set of 

crisp rules to avoid complexities and optimization errors due 

to random selection of training records. In [6], among neural 

networks, decision trees and logistic regression, decision 
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trees proved to be the best classifier for cancer prognosis 

using SEER data. Now the problem with decision tree 

algorithms is that, the decision boundaries at each node are 

sharp (for continuous valued attribute), due to which even 

small changes in attribute values may result in 

misclassifications [9]. Therefore, decision boundaries need 

to be softened and there should be a gradual transition 

between attribute values. Here comes the role of fuzzy logic 

in decision trees, in step-2, to generate fuzzy decision trees 

(FDTs). 

      Rest of the paper is divided in the following way: section 

II describes the data source and the modeling of FDTs, 

section III presents performance evaluation and finally 

section IV concludes this manuscript.  

II. MATERIALS AND METHODS 

A. Prognostic and Predictive Factors in Breast Cancer 

Survival of patients with breast cancer depends on two 

different types of prognostic factors: 1) Chronological 

[indicators of how long the cancer has been present (e.g. 

tumor size)], 2) Biological [indicators of metastatic 

aggressive behavior of a tumor (e.g. tumor grade)] [10]. 

They determine, either or not a particular tumor might 

respond to a specific therapy. Definitions and effect of some 

of the most important prognostic factors is given below:  

• Lymph node status: Lymph nodes, where cancer cells 

get accumulated. Both number of nodes and level of 

involvement worsen the prognosis. 

• Stage: Defined by the size of tumor and its spread. 

Survival is inversely proportion to size of tumor. 

• Grade: How does the tumor looks like and its 

resemblance to more or less aggressive tumors. 

Figure-1 shows ranking of survivability attributes in terms of 

their decisive strength, calculated using information gain 

(IG) applied to breast cancer data, as described in 

subsection-C.  

Ranked Survivability Attributes
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Fig. 1. Ranked Survivability Attributes 

B. Data Source 

In this research work, SEER (Surveillance, Epidemiology, 

and End Results) data (1973-2003) is used for breast cancer 

prognosis. Files were requested through website 

(www.seer.cancer.gov) of SEER program which is a part of 

Surveillance Research Program at National Cancer Institute. 

The data set is considered to be the most comprehensive 

source of information on cancer incidence in USA and 

SEER program claims quality and completeness of data.  

Initially, there were 433,272 records each with 86 

variables. Each record represents one incidence of cancer. 

Considering the aim of survival prediction, a binary target 

variable is created with values 0 (did not survive) and 1 

(survived). Although much of the time in this research work 

was spent on data cleansing and preprocessing, only a brief 

description is given here. Records containing missing and 

inconsistent data, along with those in which cause of death 

(in 5 years after diagnosis) was other than cancer, were 

removed. Moreover, variables which are redundant (like 

recodes) and irrelevant (some variables are common in all 

cancer types) were removed. After an exhaustive 

preprocessing, final data set with 162500 records, 16 

predictor variables and 1 target variable, was constructed. 

Following are the predictive variables used in our work: 
TABLE1 

PREDICTOR VARIABLES FOR SURVIVAL MODELING 

Symbol Nominal Variable Name Num of 

Distinct 

Values 

B  Race 28 

C  Marital Status 9 

D Primary Site 9 

E HistologicTypeICD 44 

F Behavior Code 2 

G Grade 5 

I Extension of Tumor 12 

J Node Involvement 10 

M Site Specific Surgery 22 

N Radiation 9 

O Stage 9 

   

Symbol Numeric Variable Name Mean Std.Dev Range 

A Age at Diagnosis 61.105 14.165 20-106 

K Num of Pos Nodes 24.376 41.238 0-99 

H Tumor Size 103.168 273.144 0-999 

L Num of Nodes 14.033 16.89 0-99 

P Num of Primaries 1.302 0.565 1-6 

C. Decision Trees 

As mentioned above, to generate fuzzy rules, we opted to 

use decision trees in the first step of modeling. We used 

binary C4.5 for all the experiments mentioned in this 

manuscript. It works as follows: to partition the data at each 

stage of tree, a test is performed to select an attribute with 

lowest entropy. Information gain (IG) is used as a measure 

of entropy (H) difference when an attribute contributes the 

additional information about class C [11].  

                

H(C) = -∑p(c) logp(c)          , c Є C            (1) 

H (C|Xi) = -∑p(x) ∑p (c|x) logp (c|x),     xЄXi, c Є C     (2) 

IGi = H(C) - H (C|Xi)                                   (3) 

 

In equation (1), p(c) is the probability that an arbitrary 

sample belongs to class ‘c’.  Equation (2) shows the entropy 

after observing the attribute Xi for the class ‘c’ and p (c|x) is 

the probability that a sample in attribute branch Xi belongs to 

class ‘c’. Table-2 shows different decision tree models, 

which we generated during experiments. 

.  
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 TABLE 2: 

COMPLEXITY VS ACCURACY                 

 No. of Rules Accuracy 

Model-1 17 82% 

Model-2 21 83.5 % 

Model-3 40 84 % 

And at 500 rules, accuracy was 95%. Due to sharp decision 

boundaries of crisp decision tree rules, this natural tradeoff 

gets harder. For a physician involved in prognostic decision 

making, both accuracy and interpretability are a must. So we 

decided to choose interpretability first and leave the 

accuracy and decision confidence for the second stage. 

Hence model-1 is chosen to apply fuzzification and 

inference in next step. Following are the first (R1) and last 

(R17) rules of this model.   

 

 

 

 

 

 

D. Fuzzy Decision Trees (FDTs) 

In some previous studies [12, 13] on FDTs, proposed 

approaches focus on modification of decision tree pruning 

algorithm and require fuzzy parameters to be set by domain 

experts. We opted to fuzzify already generated decision tree 

nodes to relax the sharp decision boundaries. A similar 

approach is used in [7].  

1) Fuzzification: An attribute or decision node is represented 

by a fuzzy set using a pair of complimentary membership 

functions. Although there can be many smart ways to 

initially specify the domain, lower bound ‘δi’ and upper 

bound ‘δn’ of a membership function, we stick to a common 

and simplified domain specification. Since decision 

threshold ‘dt’ is already generated at each node of DT and 

remains fixed, domain delimiters can be calculated as: 

    δi =   dt – f *σ   and   δn = dt + f *σ      (4) 

here δi and  δn are lower and upper bounds of membership 

function, respectively. ‘σ’ is the standard deviation of the 

domain attribute. ‘f’ is the fuzzification applied around 

decision threshold ‘dt’. For our experiments, ‘f’=2 gave the 

optimal results. Usually, it is chosen in the range of 0 to 5. 

This is because larger values of ‘f’ would introduce too 

much fuzzification and decision making process would 

become unclear. Linear, sigmoid, convex and concave 

membership functions were used to fuzzify each decision 

tree node. Sigmoid and linear produced good results. 

Linear (δi, δn, x) =
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Sigmoid  

(x; δi, ,δn, β )    =  

 

Here β  is usually half membership point (δi + δn )/2.    
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Fig. 2: First and Last Rules of Model-1 in Fuzzified Form 

            

Figure-2 shows, how an attribute at each node is fuzzified 

using left and right complimentary membership functions 

(M1,M2).The above mentioned crisp rules (R1, R17) can be 

obtained in fuzzified form by traversing the left most and 

right most paths of the tree in figure-2. An important feature 

of this approach is that, it preserves the decision thresholds 

and symbolic structure obtained from induced tree. 

2) Fuzzy Inference: The approach used is very simple and 

interesting in a way that, for classifying an example, all the 

rules contribute to some degree. A brief description is given 

below: (for classification of an incoming record) 

• For each path (or rule) of the fuzzy decision tree, a 

cumulative membership grade is calculated by applying 

an intersection operator to the set of individual 

membership function values at each branch on that path. 

For example, cumulative membership grade of first rule 

R1(left most path from root to leaf, in figure-2) is 

computed as: 

  µ (R1) = ∩ {µI1M1 (x9), µA1M1(x1), µJ1M1 (x10)}        

•  Now we have 17 cumulative membership grades. Each 

of such grades is multiplied by the rule weight or 

certainty factor CFi. CFi is calculated as [8]: 

1) When consequent class is YES (or 1) 

 

CFi =  

  

2) When consequent class is NO (or 0)    

CFi =   
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R17: If ExtensionOfTumor > 40.0 AND SiteSpecificSurgery 

> 10.0 AND AJCCStage3ed > 32.0 then IsSurvival=0 
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In simple words 10 ≤≤ iCF , means when all compatible 

patterns with rule Ri (those with ( )xiµ  >0 for Ri) belong 

to the same class, CFi equals one. This weight is 

calculated for each rule using training data. Rule weight 

has a great significance in fuzzy inference and here it is 

used as an alternative of Genetic Algorithms for parameter 

optimization.    

•  Finally, all the products (µ (Ri)*CFi) are combined 

using union operator, and a rule (e.g. Zadeh) or a class 

(e.g. Yager) with maximum membership grade, will 

decide the class of incoming record. 

Decision = ∪ {µ(R1)*CF1 , µ(R2)*CF2 , …. µ (R17)*CF17} 

We used Yager and Zadeh [11] inference operators for 

intersection and union.  

III. PERFORMANCE EVALUATION 

Experiments were performed using WEKA and Java on a 

Pentium PC at 1.7GHz with 1.5GB RAM. Execution time 

for calculating decision tree with different kernel functions 

varied for 6 to 12 seconds. Out of 162500 records, 30000 

records as training and 10600 as test data were obtained 

using uniform random selection, taking into account the 

overlapping factor. In this research work, we used three 

performance measures: accuracy, sensitivity and specificity;  

    Accuracy = 
FNFPTNTP

TNTP

+++

+

 

Sensitivity   =  
FNTP

TP

+

    Specificity = 
FPTN

TN

+

 

where TP, TN, FP and FN denotes true positives, true 

negatives, false positives and false negatives, respectively. 

Following table shows the class-wise statistics for 

performance evaluation of decision trees and fuzzy DTs. 
TABLE2 

PERFORMANCE STATISTICS OF DTS AND FDTS  

Following are the average error rates on unseen test set, for 

different fuzzy membership functions and inference 

techniques in FDTs. 
TABLE3 

AVERAGE ERROR RATE ON UNSEEN DATA  

IV. DISCUSSION 

In this paper, we have shared our experiences of 

investigating intelligent machine learning techniques for 

breast cancer prognosis analysis. We analyzed the possible 

potential of fuzzy logic based classifiers, and came up with a 

conclusion that they can be the natural allies of a physician 

involved in predictive medicine. Moreover, they can 

proficiently manage contrasting requirements of accuracy, 

interpretability and balance in decision. When we say 

balance, obviously it is not crisp. Interesting cooperation 

between DTs and FDTs helps to realize this aim.  

       After these experiments, we outlined some future 

dimensions which can help FDTs to prove their potential as 

a strong classifier and predictor in cancer prognosis. 

Optimization through rule weights or genetic algorithms; an 

analysis is required, since rule weights, domain delimiters 

and inference parameters are the key players affecting 

accuracy. In this work, we used rule weights for parameter 

optimizations [8]. Cooperation among rules in decision 

making process can also be a good area research in this 

perspective.  

      We are committed to explore the strengths of FDTs for 

personalized predictive medicine, which is indeed a growing 

trend in personalized healthcare. 
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Classes YES  NO  

No. of Instances 8424  2238  

Classifier DTs FDTs DTs FDTs 

True Positives 8000 8250 760 865 

True Negatives 760 865 8000 8250 

False Positives 1478 1373 330 174 

False Negatives 424 174 1418 1373 

Sensitivity 0.95 0.98 0.35 0.39 

Specificity 0.34 0.39 0.96 0.99 

Accuracy 82% 85% 82% 85% 

Inference Tech. Linear Sigmoid Convex Concave 

ZADEH 16.2 15.8 17.5 17.8 

YAGER 15.5 14.8 16.7 17 
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