
BIOINFORMATICS Vol. 21 Suppl. 2 2005, pages ii59–ii65
doi:10.1093/bioinformatics/bti1110

Protein Structure and Function

Fast protein classification with multiple networks
Koji Tsuda1,2, HyunJung Shin1,3,∗ and Bernhard Schölkopf1
1Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany,
2Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology
(AIST), 2-42 Aomi Koto-ku, Tokyo, Japan and 3Friedrich Miescher Laboratory, Max Planck Society,
Spemannstrasse 37, 72076, Tübingen, Germany

ABSTRACT
Motivation: Support vector machines (SVMs) have been success-
fully used to classify proteins into functional categories. Recently, to
integrate multiple data sources, a semidefinite programming (SDP)
based SVM method was introduced. In SDP/SVM, multiple kernel
matrices corresponding to each of data sources are combined with
weights obtained by solving an SDP. However, when trying to apply
SDP/SVM to large problems, the computational cost can become
prohibitive, since both converting the data to a kernel matrix for the
SVM and solving the SDP are time and memory demanding. Another
application-specific drawback arises when some of the data sources
are protein networks. A common method of converting the network to a
kernel matrix is the diffusion kernel method, which has time complexity
of O(n3), and produces a dense matrix of size n × n.
Results: We propose an efficient method of protein classification
using multiple protein networks. Available protein networks, such as
a physical interaction network or a metabolic network, can be directly
incorporated. Vectorial data can also be incorporated after conversion
into a network by means of neighbor point connection. Similar to the
SDP/SVM method, the combination weights are obtained by convex
optimization. Due to the sparsity of network edges, the computation
time is nearly linear in the number of edges of the combined network.
Additionally, the combination weights provide information useful for
discarding noisy or irrelevant networks. Experiments on function pre-
diction of 3588 yeast proteins show promising results: the computation
time is enormously reduced, while the accuracy is still comparable to
the SDP/SVM method.
Availability: Software and data will be available on request.
Contact: shin@tuebingen.mpg.de

1 INTRODUCTION
To understand the complex mechanisms of the cell, it is crucial to
identify the function of numerous proteins (Alberts et al., 1998).
However, since identifying the protein function by biological exper-
iments is still costly and difficult, there have been proposed a
number of methods for inferring protein function by computational
techniques [see Tsuda and Noble (2004) and references therein].
Typically, these methods use various kinds of information sources
such as gene expression data, phylogenetic profiles and subcellular
locations, because no single source is sufficient to reliably identify
protein functions. Recently, it is getting increasingly popular to

∗To whom correspondence should be addressed.

represent the relations among the proteins as a network. In such
a network, nodes represent genes or proteins, and edges repres-
ent physical interactions of the proteins (Schwikowski et al., 2000;
Uetz et al., 2000; von Mering et al., 2002), gene regulatory rela-
tionships (Lee et al., 2002; Ihmels et al., 2002; Segal et al., 2003),
closeness in a metabolic pathway (Kanehisa et al., 2004), similarities
between protein sequences (Yona et al., 1999), etc. Protein networks
have been used for function prediction in a number of approaches,
for example, majority vote (Schwikowski et al., 2000; Hishigaki
et al., 2001), graph-based (Vazquez et al., 2003), Bayesian (Deng
et al., 2003), discriminative learning methods (Vert and Kanehisa,
2003; Lanckriet et al., 2004a), and probabilistic integration by
log-likelihood scores (Lee et al., 2004).

Among these approaches, the support vector machine (SVM) has
been particularly successful in function prediction using multiple
data including networks (Lanckriet et al., 2004a,b). In order to com-
bine different data types (e.g. vectors, trees and networks), each
dataset is represented by a kernel matrix. When we have n proteins,
the kernel matrix is an n × n positive definite dense matrix, rep-
resenting similarities between proteins. A kernel matrix is obtained
from each dataset. Finally, the kernel matrices are integrated into
one matrix and fed into an SVM for inferring the labels of unan-
notated proteins. For example, the SDP/SVM method by Lanckriet
et al. (2004a) uses a weighted sum of kernel matrices, where the
weights are automatically determined such that irrelevant datasets
can be discarded.

However, one of the inherent problems of SDP/SVM is its compu-
tational inefficiency. In theory, the method has the time complexity of
O(n3), where n is the number of data or the dimension of kernel mat-
rix. Thus, when the data is large-scale, learning may not be finished
in a reasonable time.1 The inefficiency is mainly caused by the fact
that the kernel matrix is dense. Computing the product of two dense
matrices already takes O(n3). In general, it is difficult to make the
kernel methods faster than O(n3) without rather radical approxim-
ations (e.g. low rank approximation) (Schölkopf and Smola, 2002).
One may attempt to sparsify the kernel matrix by setting small val-
ues to zero. But, in general, a kernel matrix artificially ‘sparsified’ is
no longer positive definite, hence it may introduce local minima or
convergence problems into the optimization problem for learning.

Another drawback of the SDP/SVM method arises when a protein
network is used as an information source. Since the SVM requires

1Recently, a fast and greedy approximation method was proposed (Bach et al.,
2004); but the worst case complexity does not change.

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org ii59



K.Tsuda et al.

Fig. 1. Functional class prediction on a protein network: Focusing on a partic-
ular functional class, the function prediction problem boils down to two-class
classification. An annotated protein is labeled either by +1 or −1. The pos-
itive label indicates that the protein belongs to the class. Edges represent
associations between proteins. The task is to predict the class of the unlabeled
proteins marked as ‘?’.

a kernel matrix of the data source, each network has to be converted to
a corresponding kernel matrix. Conventionally, the diffusion kernel
is used for that purpose (Kondor and Lafferty, 2002). However, it has
a time complexity of O(n3), and produces a dense matrix of n × n,
making it thus computationally expensive both in time and memory.

In recent years, we have seen a significant progress of graph-
based semi-supervised learning methods in the machine learning
community (Zhou et al., 2004; Belkin and Niyogi, 2003; Zhu et al.,
2003; Chapelle et al., 2003). As in kernel methods, n proteins are
represented as an n × n symmetric matrix, but now it is sparse and
therefore can be depicted as an undirected graph (Fig. 1), where each
edge represents a non-zero entry. Our assumption is that an edge rep-
resents association of two proteins, thus the labels of two adjacent
nodes are likely to be the same (See Section 2 for details). Each edge
can have a positive weight, representing the degree of association.
Focusing on a particular functional class, the function prediction
problem boils down to a two-class classification problem. For annot-
ated proteins, the labels are known (+1 for those belonging to the
class, −1 otherwise). Our task is to predict the labels of unannotated
proteins (‘?’ in the figure). In graph-based learning algorithms, the
prediction can be done by solving a linear system with a sparse coef-
ficient matrix, which is faster than the SVM learning by orders of
magnitude (Spielman and Teng, 2004).

One important problem in graph-based learning, which has not
yet been addressed, is the combination of multiple graphs (Fig. 2). A
graph can be generated from a kernel matrix by thresholding. Also,
one can use various kinds of protein networks directly. Since it seems
unlikely that one graph contains all the information necessary for
function prediction, one has to integrate all the graphs into one. How-
ever, some graphs can be harmful for accurate prediction, because
they contain a number of false edges, or because the data itself has
inherently nothing to do with the function prediction. Therefore, we
need an algorithm to select ‘good’ graphs automatically. The need
for automatic selection will get larger, as the number of available data
increases due to the progress of biological screening techniques.

In this paper, we propose a new algorithm to assign weights to
multiple networks, and thereby select important ones. The selec-
tion mechanism is close to the way that the SVM selects support
vectors (Schölkopf and Smola, 2002). Label inference and weight
assignment are formulated as one convex optimization problem (i.e.
no local minima problems).

We applied our approach to functional class prediction of 3588
yeast proteins. We used five networks in all, three of which were
from protein networks (co-participation in a protein complex, phys-
ical interactions, genetic interactions), and the remaining two were
generated from non-network data (Pfam domain structure and gene
expression). In comparison with the SDP/SVM approach, we get
comparable prediction accuracy in a remarkably short time. When
all the networks were combined with uniform weights, the predic-
tion took only 1.4 s on a standard PC. Even when the weights were
iteratively optimized, it finished in 49 s.

2 GRAPH-BASED LEARNING
First, we introduce the graph-based learning algorithm for a single
network (Zhou et al., 2004). Let us assume a weighted graph G with
n nodes indexed as 1, . . . , n. A symmetric weight matrix, denoted
as W , represents the strength of linkage. All weights are nonneg-
ative (wij ≥ 0), and if wij = 0, there is no edge between nodes i

and j . We assume that the first p training nodes have binary labels,
y1, y2, . . . , yp , where yi ∈ {−1, 1}, and the remaining q = n−p test
nodes are unlabeled. The goal is to predict the labels yp+1, . . . , yn

by exploiting the structure of the graph under the assumption that
a label of an unlabeled node is more likely to agree with those of
more adjacent or more strongly connected nodes. In our case, the
label indicates whether a protein belongs to a functional class or not.
We solve this binary classification problem for every class to finally
predict the functional classes of proteins.

Let us define an n-dimensional score vector f = (f1, . . . , fn)
�.

In learning, we determine f using all the available information,
and in prediction, the labels are predicted by thresholding the score
fp+1, . . . , fn. We require (A) the score fi should not be too different
from the scores of adjacent vertices, and (B) the scores should be
close to the given label yi in training nodes. One can obtain f by
minimizing the following quadratic functional:

p∑
i=1

(fi − yi)
2 + µ

n∑
i=p+1

f 2
i + c

n∑
i,j=1

wij(fi − fj )
2, (1)

The first term corresponds to the loss function in terms of condi-
tion (B), and the third term describes the smoothness of the scores
in terms of condition (A). The parameter c trades off loss versus
smoothness. The second term is a regularization term to keep the
scores of unlabeled nodes in a reasonable range. Alternative choices
of smoothness and loss functions can be found in Chapelle et al.
(2003). From later on, we focus on the special case µ = 1 (Zhou
et al., 2004). Then, the three terms degenerate to the following two
terms,

min
f

(f − y)�(f − y) + cf T Lf , (2)

where y = (y1, . . . , yp , 0, . . . , 0)�, and the matrix L is called
the graph Laplacian matrix (Chung, 1997), which is defined as
L = D − W where D = diag(di), di = ∑

j wij . Instead of L,

the ‘normalized Laplacian’, L̃ = D−1/2LD−1/2 can be used to
get a similar result (Chung, 1997). The solution of this problem is
obtained as

f = (I + cL)−1y, (3)

where I is an identity matrix.

ii60



Fast protein classification with multiple networks

Fig. 2. Multiple graphs: A set of graphs is given, each of which depicts a different aspect of the proteins. Since different graphs contain partly independent
and partly complementary pieces of information, one can enhance the total information by combining these graphs.

Actually, the score vector f is obtained by solving a large sparse
linear system y = (I + cL)f . This numerical problem has been
intensively studied, and there exist efficient algorithms, whose com-
putational time is nearly linear in the number of non-zero entries
in the coefficient matrix (Spielman and Teng, 2004). Therefore,
the computation gets faster as the protein network gets sparser.
Moreover, when the linear system solver is parallelized and distrib-
uted on a cluster system, the graph-based learning algorithm easily
scales to much larger networks.

3 COMBINATION OF MULTIPLE NETWORKS
Since proteins are represented by many aspects (e.g. amino acid
sequences, structures and interactions), it is natural to assume mul-
tiple networks. However, we do not really know in advance, which
networks are important for predicting functional classes. Selecting
exactly one network out of m networks would be relatively easy,
because one can solve the learning problem using each network, and
select the best one in terms of, say, the cross-validation error. How-
ever, as the integration of multiple data sources is essential to achieve
high accuracy (Lanckriet et al., 2004a), our task is rather to choose
m0(≤m) networks out of m. To examine every possible combination,

we have to solve a combinatorial number of

(
m

m0

)
learning problems.

In this section, we instead propose a convex programming-based
algorithm to determine the important networks efficiently. The con-
tents of the last section are already popular in the machine learning
community. The novelty of this paper lies in the algorithm described
in this section.

Without loss of generality, the optimization problem (2) is
rewritten in the constrained form as

min
f ,γ

(f − y)�(f − y) + cγ , f �Lf ≤ γ . (4)

When we have multiple Laplacian matrices L1, . . . , Lm, this
problem can be extended to take all of them into account,

min
f ,γ

(f − y)�(f − y) + cγ , f �Lkf ≤ γ , k = 1, . . . , m. (5)

This amounts to taking the upper bound of the smoothness function
f �Lkf over all networks and applying it for regularization.

To investigate the properties of the solution of Equation (5), let us
derive the dual problem (Schölkopf and Smola, 2002). Our convex
optimization problem can be rewritten as the following min-max
problem using Lagrange multipliers,

max
α,η

min
f ,γ

(f − y)�(f − y) + cγ +
m∑

k=1

αk(f
T Lkf − γ ) − ηγ , (6)

where the Lagrange multipliers satisfy αk , η ≥ 0. If the inner
minimization problem is solved analytically, we end up with the
maximization problem with respect to the Lagrange multipliers only.
This maximization problem is called the ‘dual problem’, which is
often easier to solve. The optimal solution of the original problem
is written in terms of the Lagrange multipliers, which assist in the
interpretation of the optimal solution. For example, for SVMs, the
analysis using the dual problem is effectively used for explaining the
basic properties of the discriminant hyperplane (e.g. large margin
and support vectors) (Schölkopf and Smola, 2002).

Let us solve the inner optimization problem. Setting the derivative
with respect to γ to zero, we get

c −
m∑

k=1

αk = η. (7)

ii61



K.Tsuda et al.

Since η ≥ 0, the sum of αk is constrained as
∑m

k=1 αk ≤ c.
Substituting Equation (7) into Equation (6), we have

(f − y)�(f − y) +
m∑

k=1

αkf
T Lkf (8)

Setting the derivative with respect to f to zero, we get(
I +

m∑
k=1

αkLk

)
f = y. (9)

This is solved as

f =
(

I +
m∑

k=1

αkLk

)−1

y. (10)

Now the optimal solution of f is written in terms of the Lagrange
multipliers αk . Comparing Equation (10) with the single network
solution (3), it is clear that the Lagrange multipliers αk play a role
as the combination weights of the networks. Also, the parameter c

constrains the sum of all weights.
Substituting Equation (10) into the Lagrangian (6), we get the

following dual problem:

maxα y�y − y�
(

I +
m∑

k=1
αkLk

)−1

y

s.t.
∑

k αk ≤ c.
(11)

Ignoring a constant term, this maximization problem is equivalent to
the following minimization problem:

minα y�
(

I +
m∑

k=1
αkLk

)−1

y

s.t.
∑

k αk ≤ c.
(12)

Denote by d(α) the dual objective function (12). Due to the Karush–
Kuhn–Tucker conditions, we have αk(f

�Lkf − γ ) = 0 at the
optimal solution. Therefore, αk = 0 iff f �Lkf < γ , and so αk > 0
iff f �Lkf = γ . If the constraint f �Lkf ≤ γ is satisfied as an
equality only for several networks, we get a sparse solution for αk ,
namely some of αk’s are exactly zero. The networks with zero weight
(i.e. αk = 0) are considered as unnecessary, because the optimal
score vector f would not change, even if we removed those net-
works. On the other hand, the networks with non-zero weight satisfy
f �Lkf = γ and play a essential role in determining the score vector.

3.1 Regularized version
In combining networks, one has to balance two contradicting goals:
selection and integration. In practical applications, we found the
above algorithm too selective (i.e. the maximum weight is too dom-
inant). To make the weights {αk}mk=1 more uniform, we introduce
other terms as follows:

min
f ,ξ ,γ

(f − y)�(f − y) + cγ + c0

m∑
k=1

ξk

s.t. f T Lkf ≤ γ + ξk , ξk ≥ 0, γ ≥ 0.
(13)

The dual problem then reads

minα y�
(

I +
m∑

k=1
αkLk

)−1

y ≡ d(α)

s.t. 0 ≤ αk ≤ c0,
∑

k αk ≤ c.
(14)

This extension adds a new parameter c0, which gives us large flex-
ibility. When c0 = c, we recover the solution of Equation (12), and
on the other extreme (c0 = c/m), we obtain uniform weights.

3.2 Optimization
The optimization problem is solved, for example, by gradient des-
cent. This requires the computation of the dual objective d(α) as well
as its derivative. The derivative is described as

∂d

∂αj

= −y�
(

I +
m∑

k=1

αkLk

)−1

Lj

(
I +

m∑
k=1

αkLk

)−1

y.

(15)

Note that we used the relation

∂

∂x
Y−1 = −Y−1

(
∂

∂x
Y

)
Y−1.

Although we have the inverse matrix
(
I + ∑m

k=1 αkLk

)−1
in the

solution (10), the objective (12), and the derivative (15) as well, we
do not need to calculate it explicitly, because it always appears as the
vector

(
I + ∑m

k=1 αkLk

)−1
y, which can be obtained as the solution

of sparse linear systems. Therefore, the computational cost of the
dual objective and the derivative is nearly linear in the number of
non-zero entries of

∑m
k=1 αkLk (Spielman and Teng, 2004).

4 FUNCTION PREDICTION EXPERIMENTS
The proposed method was evaluated in function class prediction of
yeast proteins, based on the dataset provided by Lanckriet et al.
(2004a). The dataset contains 3588 proteins, and the function of each
protein is labeled according to the MIPS Comprehensive Yeast Gen-
ome Database (CYGD-mips.gsf.de/proj/yeast). It focuses only on
the 13 highest-level categories of the functional hierarchy (Table 1).
Note that a protein can belong to several functional classes. We solved
a two-class classification problem for every functional class, and
evaluated the accuracy of each classification.

Table 2 lists the five different types of protein networks used in
experiments. The networks W1 and W5 are created from non-network
data. The networks W2, W3, and W4 have binary edges (i.e. 0/1
weights), and are taken from the database directly. See (Lanckriet
et al., 2004a) for more information. The sparsity of the Laplacian
matrices (i.e. the fraction of non-zero entries) is shown in the last
column of the table. All the matrices are very sparse (0.7% density
in maximum), which contributes to memory-saving. If one tries to
use diffusion kernel, it will take much more memory (1/0.007 ≈
142). In learning, all the networks were transformed to normalized
Laplacian matrices Lk’s. The prediction accuracy is evaluated by
5-fold cross-validation three times. For each partition of training
and test nodes, the receiver operating characteristic (ROC) score
is calculated, and then averaged over all the five partitions. The
ROC score is calculated as the area under the ROC curve which
plots true positive rate (sensitivity) as a function of false positive
rate (1-specificity) for differing classification thresholds (Gribskov
and Robinson, 1996). It measures the overall quality of the ranking
induced by the classifier, rather than the quality of a single value
of threshold in that ranking. An ROC score of 0.5 corresponds to
random guessing, and an ROC score of 1.0 implies that the algorithm
succeeded in putting all the positive examples ahead of all of the

ii62



Fast protein classification with multiple networks

Table 1. 13 CYGD functional classes

Classes

1 Metabolism
2 Energy
3 Cell cycle and DNA processing
4 Transcription
5 Protein synthesis
6 Protein fate
7 Cellular transportation and transportation mechanism
8 Cell rescue, defense and virulence
9 Interaction with cell environment

10 Cell fate
11 Control of cell organization
12 Transport facilitation
13 Others

Table 2. Protein networks used in the experiment

Matrix Description Density (%)

W1 Network created from Pfam domain structure.
A protein is represented by a 4950-dimensional
binary vector, in which each bit represents the
presence or absence of one Pfam domain. An edge
is created if the inner product between two vectors
exceeds 0.06. The edge weight corresponds to the
inner product

0.7805

W2 Co-participation in a protein complex (determined
by tandem affinity purification, TAP). An edge is
created if there is a bait-prey relationship between
two protein

0.0570

W3 Protein–protein interactions (MIPS physical
interactions)

0.0565

W4 Genetic interactions (MIPS genetic interactions) 0.0435
W5 Network created from the cell cycle gene expression

measurements (Spellman et al., 1998). An edge is
created if the Pearson coefficient of two profiles
exceeds 0.8. The edge weight is set to 1. This is
identical with the network used in Deng et al.
(2003)

0.0919

‘Density’ shows the fraction of non-zero entries in the respective Laplacian matrix.

negatives. The value of parameter c was determined by the results of
search over

c ∈ {0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 100}.
And the chosen value for each class is as follows:

(5, 5, 25, 25, 10, 10, 5, 5, 10, 10, 100, 2.5, 25).

The proposed method was compared with individual networks,
and with the state-of-the-art SDP/SVM method based on the repor-
ted results (Lanckriet et al., 2004a). Successively, we compared the
proposed method, namely, ‘integration by optimized weights’ with
‘integration by fixed weights’.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

McNemar p–value

F
re

qu
en

cy

Fig. 3. P -value distribution of McNemar’s test: For most of 975 McNemar’s
test trials, Lopt outperforms Lk’s. Particularly, for 61% of the total number
of trials, there is a statistically significant difference (at a significance level
of α = 0.05), which corresponds to the leftmost bar.

4.1 Comparison with individual networks
First, we compared the performance between the combined net-
work (Lopt) and individual ones (Lk’s). McNemar’s test has been
conducted in order to test the significance of the difference in per-
formance (Dietterich, 1998). In principle, McNemar’s test is used
to determine whether one learning algorithm outperforms another
on a particular learning task. Figure 3 shows empirical P -value dis-
tribution of McNemar’s test. A small P -value indicates that Lopt

is better than Lk , while a P -value of 1 means no statistical dif-
ference between them. The total number of trials amounts to 975
(= 3 repetitions × 5 pairwise-tests × 5 CVs × 13 clsses). In 594
(61%) trials, there is a statistically significant difference (significance
level α = 0.05), which corresponds to the leftmost bar in Figure 3.
Specifically, in each pairwise comparison, Lopt significantly outper-
forms Lk’s in 55.31, 58.31, 60.03, 68.21 and 61.03% of the total
number of trials, respectively. Figure 4 presents the comparison of
ROC scores to the best performing individual network. Note that the
reported ROC scores were calculated based on the test nodes with
edges in the best individual network (the test nodes with no edges
were excluded).

4.2 Comparison with SDP/SVM
4.2.1 Accuracy Figure 5 presents the comparison between the
ROC scores of the proposed method and those of SDP/SVM method
reported by Lanckriet et al. (2004a). We also plot the scores of the
Markov random field (MRF) method proposed by Deng et al. (2003).
For most classes, the proposed method achieves high scores, which
are similar to the SDP/SVM methods. In classes 11 and 13 the pro-
posed method was worse (but still better than the MRF method),
which is probably due to the superior generalization performance of
the SVM. We could not perform tests of significance since it was
not available to obtain all the details of experimental results of MRF
or SDP/SVM. However, taking into account the simplicity and effi-
ciency (and thus scalability) of the proposed method, we consider
the results shown good enough to motivate the use of our method
instead of SDP/SVM.

ii63



K.Tsuda et al.

1 2 3 4 5 6 7 8 9 10 11 12 13

0.6

0.7

0.8

0.9

1

Function Class

R
O

C
 s

co
re

Fig. 4. Comparing ROC scores of combined networks and the best performing individual network. Within each group of bars, a white bar corresponds to the
best individual network, while a black bar corresponds to Lopt . Across the 13 classes, Lopt outperforms the best performing individual.

1 2 3 4 5 6 7 8 9 10 11 12 13

0.6

0.7

0.8

0.9

1

Function Class

R
O

C
 S

co
re

Fig. 5. ROC score comparison between MRF, SDP/SVM, and Lopt for 13 functional protein classes: white bars correspond to the MRF method of Deng et al.
(2003); gray bars correspond to the SDP/SVM method of Lanckriet et al. (2004a). Black bars correspond to Lopt .

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13
Function Class

optimized

fixed

R
O

C
 S

co
re

C
oe

ffi
ci

en
ts

fixed

optimized

Fig. 6. Prediction accuracy for 13 functional protein classes. The thin and thick lines in the upper figure show the ROC scores of Lfix and Lopt , respectively.
In the middle and lower figures, the combination weights of Lfix and Lopt are described, respectively.

4.2.2 Computational time Solving the sparse linear system which
appears in the solution (10), the objective (12), and the derivative
(15), only took 1.41 s (standard deviation 0.013) with MATLAB
command mldivide in a standard 2.2 GHz PC with 1 GByte of
memory. Solving the dual problem (14) that includes multiple times
of computation for the sparse linear system, took 49.3 s (stand-
ard deviation 14.8) with MATLAB command fmincon. On the
contrary, SDP/SVM method takes several hours [according to dis-
cussion with an author of Lanckriet et al. (2004a)]. Thus, the shorter
computational time will be compromisable on non-significant loss
of accuracy against SDP/SVM method.

4.3 Comparison with fixed weight integration
Another combined network was defined as Lfix = 1

m

∑m
k=1 Lk . Note

that the uniform weights corresponds to the solution of Equation (14)
when c0 = c/m = 0.2c. The ROC scores for all functional classes
are shown in Figure 6, together with the weights of networks. The
optimization of weights did not always lead to better ROC scores
(except for the classes 10, 11, 13). However, the advantage of Lopt

is that redundant networks are automatically identified. Looking at
the weights of Lopt in the figure, W4 and W5 almost always have
very low weights, which suggests that these two networks can be

ii64



Fast protein classification with multiple networks

Fig. 7. ROC curve for protein functional class 1. The thin and thick curves
correspond to Lfix and Lopt , respectively.

removed. The weights would be valuable when function prediction
experiments are conducted in similar situations, e.g. for different
species, because one needs not to prepare the redundant data. There
was no statistically significant difference between Lopt and Lfix in
performance (McNemar’s test, significance level α = 0.05). Figure 7
presents a typical ROC curve for the first class.

5 CONCLUDING REMARKS
We have presented a new algorithm to classify proteins based on
multiple networks. The application of this algorithm is not lim-
ited to function prediction. Many problems such as subcellular
localization and operon detection can also be formulated as clas-
sification problems on networks, and solved in a similar way. We
believe that graph-based learning algorithms are going to become
standard methods in computational biology, because they exhibit
very good generalization ability as well as excellent efficiency
both in terms of memory and speed. In future work, we will fol-
low this direction and try to solve other problems on multiple
networks.

ACKNOWLEDGEMENTS
The authors would like to thank G.R.G. Lanckriet for providing
the yeast protein data for comparison. We would like to thank
D. Zhou, W.S. Noble and A. Ben-hur for fruitful discussions. H.J.S.
was supported by the Korean Science and Engineering Foundation
(KOSEF).

Conflict of Interest: none declared.

REFERENCES
Alberts,B., Bray,D., Johnson,A., Lewis,J., Raff,M., Roberts,K. and Walter,P. (1998)

Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. Garland
Science Publishing, New York.

Bach,F., Lanckriet,G. and Jordan,M. (2004) Multiple kernel learning, conic duality, and
the SMO algorithm. In Proceedings of the Twenty-first International Conference on
Machine Learning (ICML), Banff, Canada, ACM Press, pp. 6–13.

Belkin,M. and Niyogi,P. (2003) Using manifold structure for partially labelled classifica-
tion. In Becker,S., Thrun,S. and Obermayer,K. (eds), Advances in Neural Information
Processing Systems (NIPS) 15, Vol. 15. MIT Press.

Chapelle,O., Weston,J. and Schölkopf,B. (2003) Cluster kernels for semi-supervised
learning. In Becker,S., Thrun,S. and Obermayer,K. (eds), Advances in Neural
Information Processing Systems (NIPS) 15. MIT Press, pp. 585–592.

Chung,F.R.K. (1997) Spectral Graph Theory. Number 92 in Regional Conference Series
in Mathematics. American Mathematical Society, Providence, RI.

Deng,M., Chen,T. and Sun,F. (2003) An integrated probabilistic model for functional pre-
diction of proteins. In Miller,W., Vingron,M., Istrail,S., Pevzner,P. and Waterman,M.
(eds), Proceedings of the Seventh Annual International Conference on Computational
Biology (RECOMB), Berlin, Germany, ACM, pp. 95–103.

Dietterich,T.G. (1998) Approximate statistical tests for comparing supervised classific-
ation learning algorithms. Neural Comput., 10, 1895–1923.

Gribskov,M. and Robinson,N.L. (1996) Use of receiver operating characteristic (roc)
analysis to evaluate sequence matching. Comput. Chem., 20, 25–33.

Hishigaki,H. et al. (2001) Assessment of prediction accuracy of protein function from
protein–protein interaction data. Yeast, 18, 523–531.

Ihmels,J. et al. (2002) Revealing modular organization in the yeast transcriptional
network. Nat. Genet., 31, 370–377.

Kanehisa,M. et al. (2004) The KEGG resources for deciphering genome. Nucleic Acids
Res., 32, D277–D280.

Kondor,I. and Lafferty,J. (2002) Diffusion kernels on graphs and other discrete structures.
In Sammut,C. and Hoffmann,A.G. (eds), Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning, (ICML 2002), Sydney, Australia, Morgan
Kaufmann, pp. 315–322.

Lanckriet,G.R.G., Deng,M., Cristianini,N., Jordan,M.I. and Noble,W.S. (2004a) Kernel-
based data fusion and its application to protein function prediction in yeast. In
Proceedings of the Pacific Symposium on Biocomputing (PSB), Big Island, HI.

Lanckriet,G.R.G. et al. (2004b) A statistical framework for genomic data fusion.
Bioinformatics, 20, 2626–2635.

Lee,I. et al. (2004) A probabilistic functional network of yeast genes. Science, 306,
1555–1558.

Lee,T.I. et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science, 298, 799–804.

Schölkopf,B. and Smola,A.J. (2002) Learning with Kernels. MIT Press, Cambridge,
MA.

Schwikowski,B. et al. (2000) A network of protein–protein interactions in yeast. Nat.
Biotechnol., 18, 1257–1261.

Segal,E. et al. (2003) Module networks: identifying regulatory modules and their
condition specific regulators from gene expression data. Nat. Biotechnol., 34,
166–176.

Spellman,P.T. et al. (1998) Comprehensive identification of cell cycle-regulated genes
of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell,
9, 3273–3297.

Spielman,D.A. and Teng,S.H. (2004) Nearly-linear time algorithms for graph partition-
ing, graph sparsification, and solving linear systems. In Proceedings of the 26th
Annual ACM Symposium on Theory of Computing, Montreal, Canada, ACM Press,
pp. 81–90.

Tsuda,K. and Noble,W.S. (2004) Learning kernels from biological networks by
maximizing entropy. Bioinformatics, 20 (suppl. 1), i326–i333.

Uetz,P. et al. (2000) A comprehensive analysis of protein–protein interactions in
Saccharomyces cerevisiae. Nature, 403, 623–627.

Vazquez,A. et al. (2003) Global protein function prediction from protein–protein
interaction networks. Nat. Biotechnol., 21, 697–700.

Vert,J.P. and Kanehisa,M. (2003) Graph-driven features extraction from microarray
data using diffusion kernels and kernel CCA. In Becker,S., Thrun,S. and Ober-
mayer,K. (eds), Advances in Neural Information Processing Systems 15. MIT Press,
pp. 1425–1432.

von Mering,C. et al. (2002) Comparative assessment of large-scale data sets of protein–
protein interactions. Nature, 417, 399–403.

Yona,G. et al. (1999) Protomap: automatic classification of protein sequences, a
hierarchy of protein families, and local maps of the protein space. Proteins, 37,
360–678.

Zhou,D., Bousquet,O., Weston,J., and Schölkopf,B. (2004) Learning with local and
global consistency. In Advances in Neural Information Processing Systems (NIPS)
16. MIT Press, pp. 321–328.

Zhu,X., Ghahramani,Z. and Lafferty,J. (2003) Semi-supervised learning using Gaus-
sian fields and harmonic functions. In Proceedings of the Twentieth International
Conference on Machine Learning (ICML), Washington, DC, AAAI Press, pp.
912–919.

ii65


