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Motivation: Close Interrelation among Stock Markets
(Unit' $ trillion)
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Economic crisis in America,
October 2008.

- Stock prices represent
sudden fluctuations

) ol Almost countries were
according to worldwide influenced by such changes.
close relations. Y
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Motivation: Close Interrelation among Stock Markets
(Unit' $ triIIion)

I :2008. 01

> Sudden fluctuation 008 10

Economic crisis in America,
October 2008.

- Such fluctuations
significantly affect the

ol Almost countries were
economy of the influenced by such changes.
countries in the world |
as a huge scale. d
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Motivation: Close Interrelation among Stock Markets

» Interrelation importance with major stock markets

(Unit: $ trillion)
- Therefore, it is very "

important to use W 2003, 01
. . )(08. 10
not only domestic " S )
. . Economic crisis in America,
economy situations " October 2008.
but also stock price " Almost countries were

indexes in world | influenced by such changes.

major stock markets for
predicting ups and
downs in domestic

stock price indexes.

L)
USA  Japen England Germany China  Indla Hongkong Wores Russia  Brazil
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Motivation: Hierarchical Structure

» There is a certain relationship between domestic individual stock
prices and other countries’ stock information and economy indexes.

Global economic indexes: National indexes:
WTI, Gold

Hyundai Samsung
Motors Electronics
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Motivation: Hierarchical Structure

» In addition, a causal hierarchical structure between economy and various
financial indexes also exists.

- ex) Global indexes such as CD interests, gold prices, exchange rates, and oil
prices affect stock markets in most countries and that leads to decrease in

domestic individual stock prices.

Global economic . .
K National indexes
indexes

Hyundai Samsung
Motors Electronics
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Hierarchy =========---

Motivation: Hierarchical Structure

» Therefore, we can say that the correlation between the economy and
national indexes and the domestic individual stock prices is not a

mutually equal but a hierarchical structure.

Global economic ) )
i National indexes
indexes

Hyundai Samsung
Motors Electronics
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Hierarchy




Motivation: Hierarchical Structure Advantage

» Advantages in the hierarchical structure
» Advantages in the hierarchical structure represent a simultaneous
consideration for both the microscopic analysis of national and social
figures and the analysis in and between hierarchies.

- As if it shows a general overview for observing geographical features to

users by varying its scale in the Google-map.

Global economic . .
) National indexes
indexes

Hierarchy - ‘ - ‘ -
Hyundai Samsung
Motors Electronics
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Motivation: Challenge

» In this paper, we propose a domestic individual stock price prediction
method by considering different national and economy indexes

interrelation using hierarchical structure.

Global economic . .
) National indexes
indexes

Hierarchy =============—- ‘—-—- - ‘
Hyundai Samsung
Motors Electronics
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Proposed Method:

Hierarchical Relationship Implementation using
Semi-Supervised Learning Graph
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Method: Semi-Supervised Learning Overview

4 N

O a data point

——  the similarity between data
points

» Semi-Supervised Learning

.
3 exp(-i(xi_xj) Z(Xi_x")) if i~],

! 0 o otherwise

k-nearest neighbor

N /
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Method: Semi-Supervised Learning Overview

Objective function

. T T
mfln(f—y) (f-y)+uf'Lf

y:(yl,”',y.,O,--',O)T YIE{_LI} qu{O}
L=D-W di:ZJ\Nij D =diag(d,)

e Loss condition: in labeled nodes, final output should be closed to the given label.

e Smoothness condition: final output should not be too different from the adjacent

node’s output.
Solution f=(1+ul)'y

f=(f f fun fn:nu)T
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Method: Semi-Supervised Learning Overview

1. How to make Labels?

2. How to make similarity matrix?
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Method: Semi-Supervised Learning Overview

Objective function

. T T
mfm(f—y) (f—y)+uf'Lf

Y, e{—l,l}

l

Semi-Supervised learning is classification method.
But time series data is continuous.

@

How to apply classification rule to continuous data?
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Method: Semi-Supervised Learning Overview

> Time series to classification problem

Real value

Real value MA;(x,)

Real value prediction task » Binary classification task

Convert
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Method: Semi-Supervised Learning Overview Method: Semi-Supervised Learning Overview

>»How to Make Labels?

» Label Interpretation

o Interpretation [ ]

y =sign(X, - MA(X))) sign (X, - MA ,(X,))> 0,
X,-MA ((X,)

Real value(X,) k-1

k

where MAK(Xt):%(Xl)+ MA (X))

X, >;—Xt+%MA (X))

a . X, >MA (X))
/I
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Method: Semi-Supervised Learning Overview Method: Semi-Supervised Learning Overview

» Label Interpretation

» How to make similarity
The result implies,

“ The price of today will increase relatively to the MA(moving average) of the previous

five days.” f —
ySs. * Graph Representation il v,“ W

oMAGG) T X

* SSL performance are influenced
similarity matrix A
s ’f' ey Tl
y !

MA(x,)

o N
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Method: Semi-Supervised Learning Overview

» Similarity matrix

Hyundai POSCO LG Chem SK

motors Telecom
Hyundai motors -
POSCO
LG Chem -
SK.
Telecom
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Method: Semi-Supervised Learning Overview

» Graph Representation

SSL performance are influenced similarity A,
=

matrix

Time series data have noise

* Original data transforms into
Technical Indicators Y

* Building similarity matrix
“W” using Technical Indicators

22
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Method: Technical Indicators Transformation

MA

BIAS

OSC

ROC

%K

%D

et
U U UL

RSI
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Method: Original Structure
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It is necessary to get some information from the stock prices of subject company like

5% fSamsun;
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Domestic
stock price

But it shows some practical difficulties for getting such information because the
information in real-time of these company is varied simultaneously.

POSCO, SK Telecom, and so on for predicting that of Hyundai Motors.
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Therefore, the information of Hyundai Motors is to be carried out using some indexes,
which can be obtained such as Dow, Nikkei, and WTI.
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But such nodes like Dow and Nikkei in a planar structure make difficult to influence on
Hyundai Motors directly.
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Method: Hierarchical Structure

Method: Hierarchical Structure
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In a upper layer, consist of national and economy indexes which are
DOW, NASDAQ, NIKKEI, WTI and so on.
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Method: Hierarchical Structure Method: Hierarchical Structure
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Method: Original Structure vs. Hierarchical Structure

TN
e~

Original SSL structure did not directly incorporate relations between national,
economic indexes and company indexes.

Hierarchical structure formulation can be directly affects nation and economy indexes
to company indexes.
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Method: Hierarchical Structure Similarity Matrix

& BT | & e
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Method: Hierarchical Structure Similarity Matrix
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Method: Original Similarity Matrix vs.
Hierarchical Structure Similarity Matrix

» Plain Similarity Matrix vs. Hierarchical Similarity Matrix

T | e
o oy Wopp
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oz Wy, | O Wy
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- ey —
* Not consider the hierarchical structure * Considers the hierarchical structure using
Global Indicators
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Method: Implementation of Hierarchical Structure
» Graph Combination

<Reference>

+Shin, H., et al.,. Graph Sharpening plus Graph Integration: A Synergy that Improves

Protein Functional Classification. Bioinformatic, 2_3{23), 3217-3224.2007.

mian yT(I+Z akLk)"y
k=1

f=0+Y a,L,)"y
k=1

m : Number of graphs
L,: Graph Laplacian

(1)
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Method: Implementation of Hierarchical Structure

The hierarchical structure attempts optimization for each layer by letting the similarity
between company and between nation.

38 Kanghee Park(Ajou Univ.)

Method: Implementation of Hierarchical Structure

e - e -
[ + + - ——]
L o=
el B, == -
o L + oy Loy + oy Ly
min (f — y)" (f — y) + Zakaka
a.f ke{L BL ,UL }
f=(I+ > a, L)ty (2)
ke{LL ,BL ,UL }
f : company price up / down
39
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Method: Implementation of Hierarchical Structure

» The dual problem then leads to

min y' I+ Yo f'LH'y=do)

k={LL,BL,UL}

0<a, <c,, a, <c; 2)
k={LL,BL,UL}

<Reference>

 Shin, H., et al... Graph Sharpening plus Graph Iniegration: A Synergy that Improves Protein Functional Classification. Bioinformatic, 23(23), 3217-3224. 2007.
40 Kanghee Park(Ajou Univ.)




Methods: Procedure

Similarity matrix

W, ,—f

Hierarchical
structure
Technical Indicator
Stock Price time Transformation :
Hierarchi

series data and other

economical indexes ﬁ‘ Net /
N - —
wl

* Shin, H., et al.,. Graph Sharpening plus Graph Integration: A Synergy that Improves Protein Functional Classification. Bioinformatic, 23(23), 3217-3224. 2007.

<Reference>

« Shin, H., et al., Oil Price Prediction From Influence Propagation. Proc. of Annual Meeting of Institute for operations Research and the Management Sciences(INFOMS 2009), pp.370,

San Diego, USA, 2009.
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Experiment

42

Experiment: Data

Upper Layer data(16)

DOW, NASDAQ, NIKKEI, HSI, SSE, TSEC,
FTSE, DAX, CAC, BSE SENSEX,
IBOVESPA, AORD, KOSPI,
Exchange_rate(KRW-USD), WTI,
CD(Certificate of Deposit)

Low Layer data(200)

Kospi_200_company(POSCO, LG Chem,
Samsung Electronics, Hyundai Motors, KIA
Motors, Hyundai Heavy Industries, SK
Telecom...)

Period: 2007.01 ~ 2008.08
Number of time point: Daily

43
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Total all kinds data - 216

data point- 403
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Experiment: Time Setting

\

A

Test Points  |— Wt_1

[

2007, 01

44

|

.................... > 2007, 06 ----> 2008, 08
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Experiment: Variables

» Upper Layer: Closing Price, Trading Volume. I. L

» Lower Layer: Closing Price, Trading Volume, Trading Value, PER,
Dividend Yield, Capital stock, Listed shares. _ o

L5 =

S
e
e

» Between Layer: Closing Price, Trading Volume.
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Experiment: Variables

Hyunda  POSCO LG SK
i motors Chem Telecom

» Input variable : Hyundai

motors.

Similarity Matrix calculated by POSCO
TIs of Closing Price, Trading
Volume, Trading Value, PER,
Dividend Yield, Capital stock and -
Listed shares.

LG Chem

» Output variable :
Label of Closing Price mm)  X,= up(+1)/down(-1)

calculated by X, = sign (X, — MA(X,))
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Experiment: Variables

» Variables Definition
Price per Share

Annual Earnings per Share

* PER(price-to-earnings ratio): PER =

* Closing Price: Price of the last transaction of a particular stock completed
during a day’s trading session on an exchange.

* Trading Volume: This is the daily number of shares of a security that
change hands between a buyer and a seller. Also
known as volume traded. Also see Up volume and
Down volume.

* Trading Value: Trading Volume X (open_price+close price)/2

47 Kanghee Park

Experiment: Variables

» Variables Definition

* Dividend Yield: The dividend yield or the dividend-price ratio on a
company stock is the company's annual dividend
payments divided by its market cap, or the dividend
per share divided by the price per share. It is often
expressed as a percentage. Its reciprocal is the
Price/Dividend ratio.

* Capital Stock Listed: Money or Financial capital.

e Listed Shares: Listed stocks number
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Experiment: Model Comparison

-

~

SSL g : Hierarchical Structure(Relation) Semi-Supervised Learning
SSL Plain Semi-Supervised Learning
ANN Artificial Neural Network
SVM Support Vector Machine (RBF)
49

Kanghee Park(Ajou Univ.)

Experiment: Parameter Selection

» Hierarchical graph combination model parameter selection
K={3,4,5,6,7,8,9, 10, 15,20}, p(c1)={0.01, 0.05, 0.07, 0.1, 0.5, 0.75, 1, 10, 100},
Coraio =10.35, 0.5, 0.75, 1}
- Best parameter combination K={15}, u(c,)={0.01}, ¢, =¢; X Cpatio»

» Semi-Supervised Learning(SSL) model parameter selection
K={3,4,5,6,7,8,9, 10, 15,20} , u(c1)={0.01, 0.05, 0.07, 0.1, 0.5, 0.75, 1, 10, 100}
- Best parameter combination K={15}, u={0.01}

» Support Vector Machine(SVM) model parameter selection
Gamma= {0.01, 0.1, 1, 10, 100, 1000}
- Best parameter combination Gamma= {0.1}

» Artificial Neural Network(ANN) model parameter selection
Hidden node= {1,2,3,4,5,6,7}
- Best parameter combination Hidden node= {4}
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Experiment: Measurement

» Comparison of Accuracy(AUC: Area under curve)

» Comparison of Profit: ROI(Return On Investment)

51
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Experiment: Measurement(AUC)

> Comparison of Accuracy(AUC: Area under curve)

0.8

06 AUC (Area under the ROC curve)

The closer the curve follows the left-hand
border and then the top-border of the ROC

0.4 space, the more accurate the classifier.

0.2

True Positive Rate (sensitivity)

0

0 0.1 02 03 040506 0708 091

False Positive Rate (1-specificity)
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Experiment: Measurement(ROI)

» Comparison of Profit: ROI(Return On Investment)

Result

¥ 1. Accuracy based on AUC

sell order price — buy order price 2 Profit based on ROI
buy order price '
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KOSPI1

Result AN
1. Accuracy based on AUC
2. Profit based on ROI

07-06-05~ 07-06-20~ 07-07-04~ 07-07-19~ 07-08-02~ 07-08-17~ 07-08-31~ 07-09-14~ 07-10-04~

Time Point | 7 06-19 07-07-03 07-07-18 07-08-01 07-08-16 07-08-30 07-09-13 07-10-02 07-10-17

Sit ave | 0.7300 | 0.7580 | 0.7673 | 0.7714 | 0.7844 | 0.8377 | 0.8396 | 0.7441 | 0.8080

SSL
Ave | 0.7144 0.7304 | 0.7055 0.7202 0.6959 0.7925 0.7890 0.7261 0.7926

Sum

M | AvC| 0.5444 | 0.5469 | 0.5214 | 0.5164 | 0.5380 | 0.8161 0.5403 | 0.6229 | 0.6303

55 N | Ave | 0.5030 | 0.5063 | 0.5007 | 0.5012 | 0.5012 | 0.5204 | 0.5030 | 0.5039 | 0.5224




KOSPI1

Block B characterizes speedy price rising.
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KOSPI1

And Block D characterizes slump.
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Block A characterizes steadiness
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Block C characterizes high

fluctuations.
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KOSPI1

Time | 07-06-05~ | 07-06-20~ | 07-07-04~ | 07-07-19~ | 07-08-02~ | 07-08-17~ | 07-08-31~ | 07-09-14~ | 07-10-04~ 70 .
Point | 07-06-19 | 07-07-03 | 07-07-18 | 07-08-01 | 07-08-16 | 07-08-30 | 07-09-13 | 07-10-02 | 07-10-17
A
SSL_ v 0.7300 | 0.7580 | 0.7673 | 0.7714 | 0.7844 | 0.8377 | 0.8396 | 0.7441 | 0.8080 s
. 80 b —_— S— S—
ssL | U 7144 7304 . 7202 . 792 . 7261 792
Livlor 0.7304 | 0.7055 | 0.7202 | 0.6959 | 0.7925 | 0.7890 | 0.7261 | 0.7926 SSLHR | 07844
A In particular, block D represented a sudden falling down as the
A 4 SSL 0.6959 crisis of pre-warning subprime mortgage loan.
svM lCJ 0.5444 | 0.5469 | 0.5214 | 0.5164 | 0.5380 | 0.8161 | 0.5403 | 0.6229 | 0.6303 é The AUC at that time represented an excellent prediction of the
5 SUM 05350 | hierarchical SSL relatively compared to other models
=)
A <
ANN g 0.5030 | 0.5063 | 0.5007 | 0.5012 | 0.5012 | 0.5204 | 0.5030 | 0.5039 | 0.5224 ANN 0.5012
Result: Accuracy based on AUC Result: Significance of Layer weights(UL, BL, LL)
0.85/ ' ‘ ' %7 . L LI
T —— 0.7 4
0.8
056 -
0.75- 1 Avg(a_y): 41(%)
2 054 = B Avela ) 360%)
! = Avg(oy): 23(%)
o7t e i
[3] 1 i 0.4 4
=] 3>
< oss, | 2
) aliv 2 o3
06 ] 0.2 -
0.1
0.55-
- 0.0
05| = e— O
| ' i 07.03 07. 18 0E.01 0. 18 (1R k] Lt 101
SSL_HR ssL SVM ANN

63

Model
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The proposed method-SSL_;; outperforms other models for most of time point.

64

Time point

The coefficient values for each layer and how important they are.
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Result: Significance of Layer weights(UL, BL, LL)

0.8
p
0.7 -
0.6
Avg(a_y;): 41(%)
9 s s P Ave(a_yy): 36(%)
wv Avg(o_;):23(%)
—
s 044
o}
3
< 0.3
0.2
0.1
0.0
G- 20 1004
a9 7.03 0&.01 (5. 18 0%13 1002 1017
Time point
The Influences black bar and red bar represent a higher level.
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Result: Significance of Layer weights(UL, BL, LL)

0.8 4

0.7

0.6 4

Avg(a_y): 41(%)
Avg(a_p): 36(%)

0.5 4
Avg(a_;): 23(%)

0.4 4

Result: ratio

034

0.2 4

0.1+

0.0 4

1004
0619 07.03 07-18 0&.01 05. 16 0%13 1002 1017
Time point
It means that in the prediction of the company’s stock prices as mentioned the influence between
nations throughout the world shows a higher level on the prices than that of between company.
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Result: Significance of Layer weights(UL, BL, LL)
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Specially, the upper layer and between layer are highly influenced in the block

where the stock price has the tendency to fall.
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Result: Significance of Layer weights(UL, BL, LL)
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When the price show significant fluctuation as in block “C” and “D”, the influence of
upper layer(oy; ) and from upper layer to lower layer(oy, ) plays a critical role of
prediction.
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Result: Significance of Layer weights(UL, BL, LL)

0.8 o

0.7 -

0.6 4

at

0.5

0.4

Ratio

0.3

0.2 4

0.1

0.0 T T T T T T T T
0605 0620~ 07.04~ 0718~ 08.02~ 08-17~ 0831~ 0O-id- 10-0a~

06-19 07-03 07-18 08-01 08-16 08-30 0813 10-02 1017
Time point
When the price show significant fluctuation as in black “C” and “D”, the influence of
upper layer(oy; ) and from upper layer to lower layer(ag; ) plays a critical role of

prediction.
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Result
1. Accuracy based on AUC
2. Profit based on ROI
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Result: Profit based on ROI
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ANN

Result: Profit based on ROI

»Buy and sell strategy

Sign (xt B MAS(xt))

Real value(X))

. + ? Hold | i Hold

Buy Sell Buy Sell
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Result: Profit based on ROI

[
s
s b s v

Buyand Hold BANN

Model Buy and
(2007.06 | SSL_g SSL SVM ANN Hold
~2008.08)
Buy/Sell | 19/19 21/21 28/28 30/30 _
times times times times times
Trading | 015% | 0.0 | o.01% | o0.015% 0%
commission
Barning | 1o a6 | +10.83% | -15.816 | -5.02% | +6.06%
Rate
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Conclusion
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Conclusion

> Interrelation between stock market.

- Alteration factors in financial and other economy indexes have a network structure
caused by a certain correlation between them.

> Advantages the hierarchical structure.

- Hierarchical structure represent a simultaneous consideration for both the microscopic
analysis of national and social figures and the analysis in and between hierarchies.

- Hierarchical structure can perform more excellent prediction than the conventional
methods due to the direct reflection of the relationship between countries and companys
through the hierarchical structure
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Conclusion

> Hierarchical structure SSL model showed a higher accuracy, profit
than other models.
- Stock price prediction model using hierarchical structure SSL was used to verify the

proposed method, and the experiments showed promising results: 0.758 of the average
AUC and the relatively excellent earning rate compared with other models.

> Hierarchical structure SSL model possible to apply it as a pre-warnin
g system.
- By introducing the hierarchical structure in a time series analysis, it is possible to

consider the analysis between international and domestic markets and that makes possible

to apply it as a pre-warning system for predicting international economy crises in case of
need.
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Future work

> Trading strategy.

- The proposed method is necessary to increase the earning rates by introducing more
various trading strategy.

> Optimum portfolio composition.

- It can be expected that the safety and earning rate can be simultaneously improved by
connecting the proposed model with an optimum portfolio composition method using
various items.
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Appendix:Technical Indicator

* A transformation is needed to extract retrospective features fro
m the time series data set

MA,(X,) = %(x[) + ZT_l MA,(X,_,) Exponential Smoothing
BIAS, (X,) = X= MAX)
MA, (X,)

MA, (X,) = MA,(X,)
MA,(X,)

— X,

0SC;,(X,) =

ROC,(X,) = The Relative Rate of Change for x,
between z consecutive trading days
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Appendix:Technical Indicator

z Xy - Min —t—z—l(xi)
Max | (Xi)_ Min | —z—l(Xi)

i=t—z-1 i=

th - MA B(Ktz)

t
E X. — X.
i=t—z-1,%;>X;_; [ i-1

t—z—qui - Xi

RSI ! =

T.I were calculated under z e {5}, jE {20}
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