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Abstract—Semi-supervised learning (SSL) has become a 

popular tool in machine learning. In SSL, label prediction for an 

unlabeled data point is determined by the similarities from its 

adjacent data points, thus how to make the similarity matrix is a 

critical factor determining the performance of SSL. When the 

data is noisy and has high dimensionality, however, the 

similarity matrix is no longer reliable and consequently, it is 

hard to expect reasonable performance of SSL. To overcome the 

difficulties, we propose to make the similarity matrix with the 

extracted features either from principal component analysis 

(PCA) or nonlinear principal component analysis (NLPCA). 
The method was validated on one artificial- and five real-world- 

problems. Thanks to the newly made similarity matrix based on 

the extracted features, the performance of SSL becomes robust 

against noise features and high dimensionality. 

I. INTRODUCTION 

ECENTLY, semi-supervised learning (SSL) has become 

a popular tool in machine learning, particularly in 

domains such as text classification and bioinformatics 

[5]-[6]. Given sets of labeled and unlabeled data points, the 

task of predicting the missing labels can be aided by the 

information from unlabeled data points, for example, by using 

information about the manifold structure of the data in input 

space. Many state-of-the art methods implement a SSL 

approach in that they incorporate information from unlabeled 

data points into the learning paradigm [1]-[4]. Despite their 

many variations, one thing common to most algorithms is the 

use of a matrix of values representing the pairwise 

relationships between data points. The matrix is denoted as the 

“similarity matrix” and plays a critical role in determining the 

performance of SSL. The label prediction of an unlabeled data 

point is made through the propagation of the labels of its 

adjacent data points, and the strength of influence of each is 

proportional to the similarity between them. However, the 

similarity matrix can be easily affected by the noise features 

and high dimensionality of the raw dataset [7]. If irrelevant or 

highly correlated features are included in calculating the 

similarity, and even worse if the data is high- dimensional, the 

similarity matrix no more well reflects the points’ influence on 

each due to either “noisy influence” or the “curse of 

dimensionality.” Consequently, it can probably deteriorate the 
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generalization ability of SSL.  

To circumvent this, a preventative against noisy influence 

and the curse of dimensionality becomes necessary before 

making the similarity matrix. One method is to use the feature 

extraction (dimensionality reduction) techniques in the 

preprocessing step. Feature extraction refers to the process of 

finding a mapping that reduces the dimensionality and of 

removing the noise effect from the dataset. With the newly 

extracted features, we can exclude the influence of redundant 

or noisy features from the similarity matrix with little or no 

loss of information [8], [9], and therefore, we can expect a 

better performance of SSL. There are various kinds of the 

method for feature extraction. As a linear method, principal 

component analysis (PCA) is the representative. By 

calculating the eigenvectors of the covariance matrix of the 

original data, PCA linearly transforms a high-dimensional 

vector of the input features into a low-dimensional one whose 

components (extracted features) are uncorrelated [10], [11]. 

On the contrary, there are several types of implementation of 

nonlinear PCA (NLPCA) [12]. Autoassociative neural 

network (AANN) is one of the well-known nonlinear 

transformation methods. In AANN, the network is trained to 

perform the identity mapping where the values of input 

features are approximated at the output layer, and the 

nonlinear principal components can be obtained from the 

hidden nodes in the bottleneck layer [13]-[16]. 

The primary purpose of this paper is to diagnose how 

robust an SSL algorithm against the noisy and 

high-dimensional input features, and therefrom suggest to use 

PCA or NLPCA as a preventative. Through feature extraction, 

the data points in the higher input space are projected onto a 

lower dimensional space of the new features extracted either 

from PCA or NLPCA. In the experiment, the performances of 

SSL with the original features and with the extracted features 

are compared. Superiority of PCA to NLPCA (or vice versa)  

depends upon linearity (or nonlinearity) of the intrinsic 

features of the underlying problem, but in practice it is 

difficult to know a priori that the given problem is linear or 

nonlinear. Therefore, the performance comparison between 

the two extraction methods will not of great interest in this 

paper.  

The rest of this paper is organized as follows. In section 2, 

the theory of SSL is presented. In section 3, PCA and AANN, 

the feature extraction methods, are described, respectively. 

Section 4 provides the experimental results, followed by the 

conclusions in the last section. 

II. SEMI-SUPERVISED LEARNING 

In (graph based) semi-supervised learning algorithm, a data 

point 𝒙𝒊 ∈ 𝑅𝑚  (i = 1,…, n) is represented as a node i in a graph, 
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and the relationship between data points is represented by an 

edge where the connection strength from each node j to each 

other node i is encoded as 𝑤𝑖𝑗  of a weight matrix W. A weight 

𝑤𝑖𝑗  can take a binary value (0 or 1) in the simplest case. Often, 

a Gaussian function of Euclidean distance between points with 

length scale  𝜎  is used to specify connection strength: 

𝑤𝑖𝑗 =  
𝑒𝑥𝑝  −

 𝒙𝒊−𝒙𝒋 
𝑇

(𝒙𝒊−𝒙𝒋)

𝜎2  𝑖𝑓 𝑖~𝑗

0       𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  ,       (1) 

The  𝑖~𝑗  stands for node i and j having an edge between them 

which can be established either by k nearest neighbors or by 

Euclidean distance within a certain radius r,  𝒙𝒊 − 𝒙𝒋 
2

< 𝑟 . 

The labeled nodes have labels𝑦𝑙  ∈   −1,1   𝑙 = 1,… , 𝐿 , 

while the unlabeled nodes have zeros 𝑦𝑢 = 0 

(u=L+1,...,L+U). The algorithm will output an n-dimensional 

real-valued vector f = [fl
T  fu

T]T = (f1, … , fL , fL+1, … , fL+U)T  

which can be thresholded to make label predictions on 

fL+1, … , fL+U  after learning. It is assumed that (a) fi  should be 

close to the given label yi in labeled nodes and (b) overall,  fi 

should not be too different from its adjacent nodes  fjs (i~j ). 

One can obtain f by minimizing the following quadratic 

functional: 

𝑀𝑖𝑛𝑓    𝑓 − 𝑦 𝑇  𝑓 − 𝑦 + 𝜇𝑓𝑇𝐿𝑓 ,               (2) 

where y =   y1, … , yl , 0, … ,0 T , and the matrix L, called the 

graph Laplacian matrix, is defined as  L = D − W , where 

 D = diag(di), di =  ωijj . The first term corresponds to the 

loss function in terms of condition (a), and the second term 

represents the smoothness of the predicted outputs in terms of 

condition (b). The parameter  μ  trades off loss versus 

smoothness. The solution of this problem is obtained as  

 f =  I + μL −1y ,                                (3) 

where I is the identity matrix. 

 

III. FEATURE EXTRACTION 

A. Principal Component Analysis (PCA) 

PCA can be used for dimensionality reduction in a data set 

by extracting important hidden features that contribute most to 

its variance. Technically, PCA attempts to find orthonormal 

axes which maximally decorrelate the original features of the 

data. Given the input data points  

xi ∈ Rm   i = 1,… , n and  xi
n
i=1 = 1, usually m < n , PCA 

linearly transforms each data point xi into a new one si by  

si 
m×1

=   UT 
m×m

    xi 
m×1

,      i = 1, … , n  ,                  (4) 

where U is the m × m  orthogonal matrix whose kth column 

uk  is the kth eigenvector of the covariance matrix  C =
1

n
 xi

n
i=1 xi

T . The matrix U can be obtained by solving the 

eigenvalue problem on C, 

λkuk = Cuk ,              k = 1,… , m  ,                  (5) 

where λk  is an eigenvalue of C and uk  is the corresponding 

eigenvector. The magnitude of an eigenvalue stands for the 

proportion of variance that can be explained by the 

corresponding eigenvector. Therefore, when taking the first p 

eigenvectors U T = {u1, u2, … , up} referring to the descending 

order of eigenvalues, λ1 > λ2 > ⋯ > λp > ⋯ > 𝜆m , we can 

find “lower” dimensional orthonormal space (mp) yet still 

retaining most important aspects of the data. A projected data 

point onto the lower dimensional space, s i , is calculated as 

the orthogonal transformations of xi, 

𝒔 𝒊 
𝒑×𝟏

= 𝑼 𝑻 
p×m

𝒙𝒊 
𝒎×𝟏

,         𝑖 = 1, … , 𝑛  ,                  (6) 

PCA is a well-established dimensionality reduction method. 

However, its applicability is limited by the assumptions on 

linearity that the data set to be “linear” combinations of certain 

features. Therefore, if the data set shows non-linear 

relationship among features, there is no guarantee that the 

extracted features by PCA will contain important features. 

 

B. Nonlinear Principal Component Analysis: 

Autoassociative Neural Network (AANN) 

Another approach to dimensionality reduction is through 

the use of an autoassociative neural network (AANN), a 

special kind of feed-forward neural networks [17]. AANN 

finds and eliminates nonlinear correlations in the data. 

Analogous to principal component analysis, it can be used to 

reduce the dimensionality of data by removing redundant 

features. General structure of AANN is shown in Fig. 1. It 

consists of an input layer, an output layer, and multiple hidden 

layers. Both the number of input nodes and that of output 

nodes are equally set to m. Among the hidden layers, the 

mapping layer models the mapping function (F1) and the 

demapping layer models the demapping function (F2). The 

number of nodes in a particular hidden layer (p), so called 

“bottleneck layer”, is set to be less than the number of nodes in 

the input/output layer (p<m).  

In autoassociative mapping, the target data are set to be 

identical to the input data. This “identity mapping” creates a 

global reduction of the data dimensionality while the input 

data go through the bottleneck layer before appearing at the 

output layer. Let F denote the autoassociative mapping learnt 

by the network. If  x 1, x 2, … , x n  is the set of output data 

produced by the AANN when the input data set  x1, x2, … , xn  
is given, the F can be found while minimizing the mean square 

error E, 



 

 

 

 

Fig.1 Architecture of AANN 

  

𝐸 =   𝒙𝒊 − 𝒙 𝒊 
𝑇 𝒙𝒊 − 𝒙 𝒊 

𝑛
𝑖=1 =   𝒙𝒊 − 𝐹(𝒙𝒊) 

𝑇 𝒙𝒊 − 𝐹(𝒙𝒊) 
𝑛
𝑖=1 . (7)                                                                      

The mapping function F can be separated into 𝐹1 and 𝐹2, so 

that 𝐹 .  = 𝐹2(𝐹1 .  ), where 𝐹1 is the transformation in the 

network from the input layer upto the dimension compressing 

hidden layer (the bottleneck layer), and 𝐹2  is the 

transformation from the bottleneck layer upto the output layer. 

To summarize, the data is first compressed to lower 

dimensionality and then reconstructed. The mapping from the 

input layer to the bottleneck layer can be regarded as 

“nonlinear” projection onto the lower dimensional space 

(mp), and each node in the bottleneck can be considered as 

an extracted feature retaining significant information of the 

data. New data s i are then calculated as 

 

s l 
p×1

= F1  xl  
m×1

   ,                              (8) 

In theory, AANN can extract good features from any type of 

nonlinear relationship occurring in the data if the architecture 

is well designed. However, there is no definitive method for 

deciding a priori the number of nodes in the bottleneck layer. 

 

IV. EXPERIMENT RESULTS 

We applied the proposed method to various kinds of 

problems: an artificial problem and five real-world problems. 

The original dimensionality of each dataset was reduced by 

using PCA and NLPCA respectively, and the similarity 

matrices from the original features and the two types of new 

extracted features were calculated. Hereafter, we denote    

those matrices as 𝑾original , 𝑾PCA  and 𝑾NLPCA . For 

performance comparison of SSL among the three different 

similarity matrices, the area under the ROC curve (AUC)  

were measured. This experimental setting will show how 

influential the similarity matrix is to the performance of SSL, 

particularly when the original data is noisy and the 

dimensionality is high. 

 

A. Artificial problem 

The proposed method was evaluated on Two-moon data as 

shown in Fig. 2. A total of 500 two-dimensional data points 

were generated from two underlying classes and each class has 

250 data points.  We added different numbers of distractor 

features, called „noises‟, which have nothing to do with 

classification accuracy. The number of the noise features 

varies depending on the degree of noise, 13 and 52, 

respectively, as shown in Fig. 3.  

 
Fig. 2    Two-moon data 

 

According to the experimental setting, several types of 

similarity matrix were calculated from the original two 

features (two-dimension), the 13 noise-added features 

(15-dimension), the 52 noise-added features (54-dimension), 

the two sets of the PCA extracted two features from 13 (or 52) 

noise-added feature set (two-dimension) and the two sets of 

NLPCA extracted two features from 13 (or 52) noise-added  

feature set (two-dimension), respectively. Then the AUCs of 

seven similarity matrices were measured under various 

combinations of parameters  𝑘, 𝜇, 𝑁 𝜖 3,5,10 ×
 0.1,1,10 ×  2, 5,10,20  where k is the number of k-nearest 

neighbors in Eq.(1), 𝜇  is the loss-smoothness tradeoff 

parameter in Eq.(2) and N is the percentage (%) of the labeled 

data points in the data set. 
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Fig. 3   Experimental setting with two different degrees of noise added to the 

two original features, (a) 13 noise features and (b) 52 noise features, 

respectively. 

 

The results are shown in Fig. 4. For simplicity, the 

similarity matrix of the original two features is denoted as 

„𝑾𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ‟, that of the noise-added features as „𝑾𝑤/𝑛𝑜𝑖𝑠𝑒 ‟ 

and those of the extracted features through PCA and NLPCA 

as „𝑾𝑃𝐶𝐴‟ and „𝑾𝑁𝐿𝑃𝐶𝐴 ‟, respectively. Fig. 4(a) shows the 

results for the case of the 13 noise-added features. The 

average AUC of 𝑾𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is 0.952, while the average AUC 

of 𝑾𝑤/𝑛𝑜𝑖𝑠𝑒  is 0.734. And so the AUC decreases 22.0% after  

noise feature addition. This implies that the existence of noise 

features degrades the original performance of SSL.  

 
Fig. 4   The comparison of AUC for different similarity matrices. The EF 

stands for the extracted features through PCA or NLPCA. The square 

indicates the best AUC after repetition of experiments over every 

combination of parameters, and the reverse triangle indicates the average 

AUC. 

The best AUCs of 𝑾𝑤/𝑛𝑜𝑖𝑠𝑒  is 0.876, while those of WPCA 

and WNLPCA are 0.914 and 0.925, respectively. Both methods 

improve the accuracy. In Fig. 4(b), when the number of the 

added noise features is 52, the avg. AUC for 𝑾𝑤/𝑛𝑜𝑖𝑠𝑒  

becomes considerably lower than that of 𝑾𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  (0.952 vs. 

0.573). The amount of the decrease is about 39.8% of the 

original performance. However, no matter which feature 

extraction method is used, the large amount of original 

performance is regained: 0.828 for WPCA and 0.827 for 

WNLPCA. The best AUC of 𝑾𝑤/𝑛𝑜𝑖𝑠𝑒  is 0.658 while those of 

WPCA and WNLPCA are 0.915 and 0.920, respectively. Through 

feature extraction, the AUC can be increased by 39.6% in the 

best case.  

Comparing the two feature extraction methods, NLPCA 

performed slightly better than PCA. The reason can be 

explained by that the underlying features of Two moon 

problem are nonlinear. And NLPCA is better at discovering 

nonlinear features than PCA which is based on linear 

transformation. However, it is hard to know in advance 

whether the problem in hand is linear or nonlinear. 

When comparing the two sets of experiments, the 13 noise 

added features and the 52 noise-added features, we can 

conclude that the more noise features incur the more serious 

degradation in performance of SSL. To recover the loss, 

feature extraction can be employed. Either PCA or NLPCA 

recovers most of the original performance. In our experiment, 

we used only “two” extracted features (EF), but we can expect 

better performance with more extracted features. And, it is 

interesting to see that the performance of feature extraction 

method is not sensitive to the changes of degree of noise from 

13 to 52: 0.831 to 0.828 for PCA and 0.845 to 0.827 for 

NLPCA. This means the two feature extraction methods 

successfully found the intrinsic dimensions of the problem 

(two dimensions in our problem) in both experimental settings. 

Therefore, we can expect more stabilized performance of SSL 

through feature extraction regardless of the degrees of noise or 

high dimensionality.  

B. Real-world problems 

a. Data 

Five real-world data sets were used for benchmarking. 

Table 1 summarizes the data sets from diverse fields: Pima 

Indians Diabetes, SPECTF and WDBC are available at [18] 

and Digit1 and USPS are available at [19].  

 

 
In order to increase readability for the results, the AUCs are 

shown at a fixed set of the values of hyperparameters,  

 𝑘, 𝜇, 𝑁  at (10, 1, 10%). 

TABLE I 

FIVE REAL-WORLD DATA SETS 

Data set Classes Original 

features 

Data 

Points 

New 

Features 

Pima Indians Diabetes 2 8 768 3 

SPECTF 2 44 267 4 

WDBC 2 32 569 7 

Digit1 2 241 1500 20 

USPS 2 241 1500 20 
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b. The number of extracted features 

It is difficult to determine the number of extracted features 

when the intrinsic dimension is unknown as in usual 

real-world problems. One of the rule-of-thumbs for PCA is to 

draw a scree plot and find the elbow point to determine the 

appropriate number of features to be extracted. In a scree plot, 

the proportion of all eigenvalues is drawn in their decreasing 

order. The plot looks like the side of a mountain, and “scree” 

refers to the debris falling from a mountain and lying at its 

base. So it proposes to determine the number of extracted 

features at the point the mountain ends and debris begins [20]. 

For AANN, however, it is hardly known how to determine the 

number of hidden nodes in the bottleneck layer. In our 

experiments, the elbow points for PCA were also used to 

determine the number of hidden nodes for NLPCA. 

Fig. 5 shows the resulting scree plots for the five data sets. 

As shown in the plots, the elbows for Pima, SPECTF, WDBC, 

Digit1, and USPS were found at 3, 4, 7, 20, and 20 

respectively, and they became the number of the features to be 

extracted for both PCA and NLPCA. 

c. Accuracy  

The AUC results for the five real-world data sets are shown 

in Fig. 6. For Pima data set, both WPCA and WNLPCA achieved a 

reasonable accuracy in AUC. Similar results can be found at  

WDBC, Digit1 and USPS. For SPECTF data set, there is a 

pronouncing improvement in AUC: 0.528 for Woriginal jumped 

upto 0.68 and 0.71 for WPCA and WNLPCA, respectively. We 

may have a conjecture that SPECTF data set contains a lot of 

redundant or noise features, and so the PCA or NLPCA 

properly works to extract relevant features among them. 

Across the five data sets, there is a slight competition between 

WPCA and WNLPCA. For instance, WPCA outperforms WNLPCA in 

SPECTF (0.68 vs. 0.71). On the contrary, WNLPCA 

outperforms WPCA in USPS (0.95 vs.0.92). Superiority of one 

method to the other seems to be dependent upon linearity (or 

nonlinearity) of the intrinsic features of the underlying 

problem. A more important fact we found through the 

experimental results is that WPCA or WNLPCA enables us to 

obtain a similar or better accuracy with much less number of 

features. The number of the extracted features ranges from 

about 8% to 38% of the original number of features: 8% in 

either Digit1 or USPS and 38% in Pima. This will be studied 

further in the next section. Table I shows the details. The 

Wilcoxon signed-ranks test were used to compare WPCA (or 

WNLPCA) and Woriginal [21]. A smaller p-value stands for  WPCA 

(or WNLPCA)  outperforms Woriginal with a greater statistical 

significance. 

d. Efficacy of a feature  

The results in Fig.5 and table I showed that a similar or 

better accuracy can be obtained with much less number of 

features through WPCA or WNLPCA. In order to study efficacy of 

a feature in length, we defined “CF” as follows, 

𝐶𝐹 =
𝐴𝑈𝐶

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 ,                          (9)  

Fig. 5   Scree plots for five data sets: the dotted line indicates the number of 

the features to be extracted, 3 for Pima Indian Diabetes, 4 for SPECTF, 7 for 

WDBC, 20 for Digit1, and 20 for USPS. 
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where it quantifies the amount of contribution of a feature to 

overall accuracy. A larger value of CF means a higher efficacy 

of a feature.  

 
 

 
 

Fig. 7 shows the results. The CF of WPCA or WNLPCA is 

relatively much higher than that of WOriginal for each of the five 

problems. For Pima Indian Diabetes, the CF of WPCA or 

WNLPCA is higher by three times than that of WOriginal. Similarly, 

the efficacy of a feature increased for other problems: 12, 5, 

12, and 12 times for SPECTF, WDBC, Digit1 and USPS, 

respectively. This implies that PCA or NLPCA extracts 

efficacy-enhanced features out of irrelevant (or noise) ones, 

which consequently enables us to achieve a similar or better 

performance with a much smaller set of features.  

 

V. CONCLUSION 

In this paper, we addressed an issue on how robust the SSL 

algorithms against the noisy and high dimensional data. Both 

factors can incur negative influence on the similarity matrix, 

and consequently, degrade the generalization ability of SSL. 

As a method of overcoming the difficulty, we proposed to use 

the extracted features from PCA or NLPCA when calculating 

the similarities between data points. In the experiment, we 

showed how much loss of performance can occur because of 

the noisy and high dimensional features, and presented how to 

regain or recover the original performance through PCA or 

NLPCA.  

As a preliminary step, the current work takes very simple 

conventional feature extraction  methods as its basis. However, 

incorporated into more sophisticated state-of-the-art feature 

extraction algorithms or newer design of a wrapper algorithm 

for SSL, our approach has the potential to improve 

considerably on the original performance of SSL and enhance 

its robustness as well. 
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Fig.7   The CF of a Feature 

 

TABLE I 

WILCOXON SIGNED-RANKS TEST 

 

Data set WOriginal  WPCA WNLPCA 

mean±std mean±std p-value  mean±std p-value  

Pima 0.70±0.037 0.73±0.033 0.00 0.72±0.035 0.06 

SPECTF 0.58±0.100 0.69±0.129 0.00 0.72±0.108 0.00 

WDBC 0.97±0.010 0.98±0.011 0.09 0.97±0.014 0.70 

Digit1 0.97±0.007 0.99±0.003 0.00 0.99±0.004 0.00 

USPS 0.94±0.012 0.95±0.007 0.00 0.93±0.027 0.00 
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Fig. 6   AUCs for the Five Real-world Data Sets: The number below the 

individual histogram stands for the number of the features used for 

making the similarity matrix W.  
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