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Intra-Relation 
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 Intra-Relation: Graph Representation 
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: Protein Network 
 Proteins  

Nodes 

: Patient Network 
Patient Samples  
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+1/-1  : Labeled patient samples with/without a 
specific  clinical outcome 

?            : Unlabeled patient samples 

1

1

1

1

1

?

?

unknown 

known 

known 

Labels 

Patient Network 
 Clinical Outcome 
 

  (ex) Breast Cancer 
    : Survived (+1)  or Not (-1) 

 
  (ex) Brain Cancer  
      : Glioblastoma Multiforme 
     : Recurrent tumor (+1) or Initial (-1) 

 
  (ex) Ovarian Cancer  
   : Serous cystadenocarcinoma 
    : Early stage T1/T2 (+1) or  
      Late stage  T3/T4 (-1) 

 

 Intra-Relation: Graph Representation 
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1

1

1

1
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?

?

Edges 

 Intra-Relation: Graph Representation 

Protein Network 
Similarities between Proteins 
 

  (ex) Physical Interaction 
     : Two proteins physically interact  
     (e.g., docking) 

 
  (ex) Metabolic Pathway 
    : Two enzymes catalyzing  
      successive reactions 
 

 (ex) Pfam domain structure  
    : Two proteins which show similar pattern   
       in presence or absence of  Pfam domains 
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Example: Metabolic Gene Network 

- Graph Representation on Biological Networks 
 
- The task is to predict (unidentified) functional classes  
  of proteins using metabolic pathways 

Naturally Given Graphs 

 Intra-Relation: Graph Representation – “Creating a Graph” 
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FBA1 

GAL10 Glucose Glucose-1P 

Glucose-6P 

Fructose-6P 

Fructose-1, 6P2 

HKA HKB GLK1 PGM2 PGM1 

PGT1 

PFK1 PFK2 FBP1 

The first three reactions 
of the Glycolysis pathway, 
together with the 
catalyzing enzymes in the 
Yeast S.serevisiae. 

 Intra-Relation: Graph Representation – “Creating a Graph” 
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GAL10 

HKA 

HKB 

GLK1 PGM2 

PGM1 

PGT1 
FBA1 

PFK1 

PFK2 

FBP1 

 Intra-Relation: Graph Representation – “Creating a Graph” 
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Prediction from Intra-Relation 
Mathematical Formulation 

THEORY 
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Prediction from Intra-Relation: Graph-based SSL 
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Cancer Clinical Outcome Prediction 
Breast Cancer Survivability 

CASE 1 
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Background 

 

According to American Cancer Society… 

 

• Estimated  new cases of breast cancer in 2010 in US.. 

• Females: 207,090 

• Males:            1,970 

 

• Estimated deaths 

• Females: 39,840 

• Males:            390 

 

 

 
15 
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Background 

 

Prediction of  Breast Cancer Survivability 

 

• “Survival” is defined as patient remaining alive for a 
specified period of time after the diagnosis of cancer 

 

• Cancer Prognosis helps in establishing a treatment plan 
by predicting the outcome of a disease 

 

 

16 
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Data 

Surveillance,  Epidemiology,  End Results (SEER)  cancer incident data 

 

162,500 Breast cancer patient records  

16 attributes  

1 class label (Survivability)  

:  +1 (not survive) 

 : - 1 (survived) 

 

 

17 
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Data: Attributes 

Stage  Defined by the size of cancer tumor and its  spread 

Grade How does the tumor looks like and its resemblance to more or less 

 aggressive  tumors 

Lymph Node Involvement None, (1-3) Minimal, (4-9) Significant etc 

Race Ethnicity like White, Black, Chinese etc. 

Age at Diagnosis  Actual age of patient in years 

Marital Status  Married, Single, Divorced, Widowed, Separated  

Primary Site  Presence of tumor at a particular location in body. Topographical 

classification of cancer 

Tumor Size 2-5 cm, at 5cm prognosis worsens 

Site Specific Surgery Information on surgery during first course of therapy whether it was cancer 

directed or not. 

Radiation  None, Beam Radiation, Radioisotopes, Refused, Recommended etc. 

Histological Type  The form and structure of tumor  

Behavior Code  Normal or aggressive behaviors of tumor have been defined in codes.  

# of Positive Nodes Examined When the lymph nodes are involved in the cancer, they are called "positive." 

# of Nodes Examined  Total nodes (positive/negative) examined 

# of Primaries Number of primary tumors (1-6) 

Clinical Extension of Tumor Defines the spread of tumor relative to breast 

Survivability Target binary variable defines the class of survival of patient. 

18 
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Model Comparison: Predictive models 

 Artificial Neural Network (ANN) 

 

 Support Vector Machine (SVM) 

 

 Semi-Supervised Learning (SSL) 

 with a patient network 

19 
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Aspects of Comparison 

Reasonable 
Accuracy 

Robustness 
over 

Parameter 
Variation 

21 

Let  the oncologists (medical specialists) run a 
predictive model by himself and interpret the 
results with his medical domain knowledge ! 

 

Then, a predictive model has the properties of  

& 
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Model Parameters (to be tuned) 
 

ANN 

Random Seed = {1, 3, 5, 7, 10} 

Hidden Node = {3, 6, 9, 12, 15} 

 

SVM 

C = {0.2, 0.4, 0.6, 0.8, 1} 

Gamma = {0.0001, 0.001, 0.01, 0.1, 1} 

 

SSL 

Mu = {0.0001, 0.01, 1, 100, 1000} 

K = {3, 7, 15, 20, 30} 

 
22 

Aspects of Comparison 
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Dataset ANN SVM SSL 

Avg_AUC Avg_AUC Avg_AUC 

1 0.59 0.68 0.76 

2 0.56 0.69 0.77 

3 0.55 0.68 0.75 

4 0.56 0.68 0.75 

5 0.56 0.70 0.77 

6 0.54 0.71 0.75 

7 0.57 0.67 0.75 

8 0.58 0.69 0.78 

9 0.56 0.70 0.76 

10 0.59 0.71 0.76 

Mean 

(St Dev) 

0.57 

(±0.07) 

0.69 

(±0.13) 

0.76 

(±0.03) 

23 

Experimental Results: Accuracy 
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Experimental Results: Robustness over parameter variation 
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Result Wrap-up 

25 

Building a patient network (Graph Representation) from 
patient samples is straightforward.  
 
Prediction algorithms based on Intra-relation is well 
established. 
 
The algorithm shows reasonably high accuracies,   
stability (or robustness) over model parameter variation, 
and is  easy to use ! 
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Integration 
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A1 A2 … A10 y 

x1 10 5 … 1000 1 

x2 6 6 … 3500 -1 

x3 7 7 … 400  1  

… … … … … … 

x7 3 88 … 700 -1 

Vectorial Data 

Graph (network) 

Sequence (string) 

x1 agctgtttagctatatgcgtatagggct  1 

x2 
cagtgtcgaatagccgctcgaaaaa

a 
-1 

… … … 

x7 catgctgtatgcccgatagcgtgatcg  -1 

1

1

1

1

1

1

1

x1 

x2 

x6 
x7 

x5 

x3 

x4 

Heterogeneous Data Sources 

+ 

+ 

 Abstract: Data Integration 



TBC November 11, 2011                                            Hyunjung (Helen) Shin 28 

Data Integration is concerned with the integration of 
different or heterogeneous data sources in order to 

enhance the total information about the problem at hand.  
 
 

Each of data sources contains partly independent and  
partly complementary pieces of information about the 

problem... 

 Abstract: Data Integration 
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Outline 
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[CASE 2- 2] 
Cancer Clinical Outcome 

Prediction 

Brain Cancer (GBM)/Ovarian Cancer (OV) 
Prediction from Multiple Genomic Data 

[CASE 2-1] 
Protein Function 

Prediction 

 
MIPS Yeast Proteins/PDBselect25-GO 
Prediction from Multiple Protein Networks 
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If Multiple Graphs are Given? 

30 
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Co-participation in a protein complex 

Protein-protein interactions 

Genetic interactions 

Cell cycle gene expression measurements 
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If Multiple Graphs are Given? 

31 

Physical interactions of the proteins 
        [Schwikowski,et al., 2000, Uetz et al., 2000, von Mering et al., 2002]  
 
Gene regulatory relationships  
       [Lee et al., 2002, Ihmels et al., 2002, Segal et al., 2003]  
 

Edges in a metabolic pathway  
       [Kanehisa et al., 2004]  
 
Similarities between protein sequences  
       [Yona et al., 1999]  
 
etc. 

Example: Multiple Graph Sources on Proteins 
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Prediction from Integration 
Mathematical Formulation 

THEORY 



TBC November 11, 2011                                            Hyunjung (Helen) Shin 

Graph Integration using SSL 

37 

1

1

1

1

1

?

?
1G

1

1

1

1

1

?

?

3G

1

1

1

1

1

?

?

KG

1

1

1

1

1

?

?
2G

k
 

3


2


1
)(  L

Shin, H., Lisewski, A.M. and Lichtarge, O. (2007)  
Graph sharpening plus graph integration: a synergy that improves protein functional 
classification, Bioinformatics, 23, 3217-3224. 
 
Shin, H. and Tsuda, K. (2006)  
Prediction of Protein Function from Networks, in Book: Semi-Supervised Learning, 
MIT press, Chapter 20, 339-352. 
 
Tsuda, K., Shin, H. and Scholkopf, B. (2005)  
Fast protein classification with multiple networks, Bioinformatics, 21 Suppl 2, ii59-65. 

Mutiple Graph (Data) Integration 
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Protein Function Prediction 
MIPS Yeast Proteins/PDBselect25-GO 

CASE 2-1 
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 Experiement  I 

Task : Protein Functional Class Classification 

Model : Graph Integration based on SSL 

Data :  MIPS Comprehensive Yeast Genome Database 

(H.Shin, K.Tsuda, and B.Schoelkopf, Bioinformatics, 2005) 
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3588 yeast proteins 

 

13 functional categories 

Binary classification for each category  

 

 5 networks 

 

5 fold cross validation 

5 times repetition  

Protein Function Prediction: Experiment I 

Data 

Output 

Input 

Setting 

MIPS Comprehensive Yeast Genome Database (CYGD-mips.gsf.de/proj/yeast) 
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1. metabolism 
2. energy 
3. cell cycle and DNA processing 
4. transcription 
5. protein synthesis 
6. protein fate 
7. cellular transportation and transportation mechanism 
8. cell rescue, defense and virulence 
9. interaction with cell environment 
10. cell fate 
11. control of cell organization 
12. transport facilitation 
13. others 1

3
 C

Y
G

D
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Protein Function Prediction: Experiment I 

MIPS Comprehensive Yeast Genome Database (CYGD-mips.gsf.de/proj/yeast) 
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Network created from Pfam domain structure. A protein is represented by a 4950-
dimensional binary vector, in which each bit represents the presence or absence of 
one Pfam domain. An edge is created if the inner product between two vectors 
exceeds 0.06. The edge weight corresponds to the inner product. 

Co-participation in a protein complex (determined by tandem affinity purification, 
TAP). An edge is created if there is a bait-prey relationship between two proteins. 

Protein-protein interactions (MIPS physical interactions) 

Genetic interactions (MIPS genetic interactions) 

Network created from the cell cycle gene expression measurements [Spellman et 
al., 1998]. An edge is created if the Pearson coefficient of two profiles exceeds 0.8. 
The edge weight is set to 1. This is identical with the network used in [Deng et al., 
2003] 

Protein Function Prediction: Experiment I 

Input Data Sources (5 networks) 
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SSL 

SDP/SVM 

k 321)(  K
K1 K2 K3 KK 

Kernel matrix 

Laplacian matrix L (or Similarity matrix W ) 
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Protein Function Prediction: Experiment I 

Density of Working Matrices 
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Label propagation with Equal Weights 

Label propagation with an Individual Graphs (k=1…5)  
kL

optL

fixL

MRF 

SDP/SVM 

Laplacian of  Combined Graph with Optimized Weights 

Markov Random Field, proposed by Deng et al [2003] 

Semi-definite Programming based Support Vector 
Machines, proposed by Lanckriet et al [2004] 

Protein Function Prediction: Experiment I 

Methods in Comparison 
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Across the 13 classes, the proposed integrated network outperforms the best 
performing individual. 

White: the best performing individual network 
Blue: Lfix 

Black: Lopt 

Protein Function Prediction: Experiment I 

Results : Integrated Network vs. the Best Performing Individual (ROC scores) 
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White: MRF 
Green: SDP/SVM 
Blue: Lfix 

Black: Lopt 

For most classes, the proposed method achieves high scores, which are similar 
to the SDP/SVM methods.  
In classes 11 and 13, the proposed method performs poor (but still better than the MRF method), 
However, taking into account the Simplicity and Efficiency the method shows the promising results 

Protein Function Prediction: Experiment I 

Results : the proposed vs. others integration methods (ROC scores) 
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Others 

Transport Facilitation 

Cell Organization 

Cell Fate 

Interaction w/ Environment 

Transportation 

Protein Fate 

Protein Synthesis 

Transcription 

Cell Cycle 

Energy 

Metabolism 

Cell Rescue 

Protein Complex Pfam network Protein Interaction 

Genetic Interaction Gene Expression 

Protein Function Prediction: Experiment I 

Results : Which data source is more informative? 
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SDP/SVM : 

49.3 seconds (std. 14.8) 

* Measured in a standard 2.2Ghz PC with 1GByte memory 

Approx. Several CPU days  

(G. Lanckriet, personal communication) 

The proposed: 

Protein Function Prediction: Experiment I 

Results : Computational Time 
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SDP/SVM : 

The proposed: 

Protein Function Prediction: Experiment I 

O((m+n)2n2.5) 

Nearly linearly proportional to the number  
of non-zero entries of sparse matrices 

Results : Computational Time 
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The proposed integrated network of multiple data sources 
outperforms the best performing individuals. 

The proposed integration method is simple, computationally 
efficient, scalable when compared with the existing 
integration method such as SDP/SVM. 

Protein Function Prediction: Experiment I 

Wrap-Up 
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Prediction from “Inter”-Relation 
Method & Mathematical Formulation 

THEORY 
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 Inter-Relation: Method/Mathematical Formulation 

Patient Graph from Gene Expression Data (Original ) 

 

Damaged Graph 

 

Reconstructed Graph (via inter-relationship) 

 

Augmented graph (GD +  GR) 

 

 

GO 

GD 

GR 

GA 
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Percent of Damaged Edges 

10% 20% 30% 40% 50% 

GA 

GD 

Augmented graph (GD +  GR) 
 

 Inter-Relation: Method/Mathematical Formulation 
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Cancer Clinical Outcome Prediction 
Brain Cancer 

CASE 3 
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 Experiment  IV 

Task : Brain Cancer Clinical Outcome Classification 

Model : Inter-Relation + SSL 

Data :  The Cancer Genomic Atlas (TCGA database) 

(D.Kim, H. Shin, S. Lee and J. Kim, TBC , 2011) 



TBC November 11, 2011                                            Hyunjung (Helen) Shin 

 Inter-Relation: Experiment - Data 

105 

Data type Platform Num of Attributes 

Gene Expression Affymetrix HT Human 
Genome U133 Array Plate 

Set 

12,043 

miRNA Agilent Human miRNA 
Microarray Rel12.0 

799 

TCGA: Gene Expression & miRNA 

 

82 patient samples of Brain Cancer (GBM) 

1 class label (Survivability)  

:  - 1 (Short-term survival: #54) 

: + 1 (Long-term survival:  #28) 
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 Inter-Relation: Experiment - Data 

106 

 

miRecords which is integrated resources of 
miRNA that store target interactions produced 
by 11 established miRNA target prediction 
program (Xiao et al., 2009) 

 

Among 11 algorithms, a binary relation 
between miRNA and mRNA was set when more 
than 3 algorithms provide the target relation 

 

 

 

 

 

1

1
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1
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1
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?

miRNA & Target Gene (mRNA) Relation 
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Inter-Relation: Experiment – Comparison Results 

GD 

GR 

GA 

GO 

Results 

107 

Improved Performance from 
Augmented Knowledge via 
INTER-RELATION  
between miRNA and Gene 
Expression 
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Results 

Percent of 
damaged edges 

AUC of GD AUC of GA P-value 

10% 0.812 0.820 1.87e-02 

30% 0.803 0.816 2.09e-03 

50% 0.788 0.804 3.43e-05 

70% 0.756 0.784 9.59e-08 

90% 0.680 0.776 1.24e-13 

108 

Significance for Differences in Performance 

Inter-Relation: Experiment – Comparison Results 

Improved Performance from Augmented Knowledge via INTER-RELATION  
between miRNA and Gene Expression 
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Inter-Relation: Wrap-up 

Conclusion 

109 

There exist Interactions between  two or more layers in the 
hierarchy of different biological levels 
 
 Ex)  miRNAs  regulate target genes 

Inter-Relation between Different Levels of  
Biological Data 
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Inter-Relation: Wrap-up 

Conclusion 

110 

This work shows how to extract the Knowledge between two 
layers of biological process and how to use it to complete the 
incomplete knowledge in other levels 
 
A Method (or Mathematical frame work)  incorporating Inter-
Relation  and Intra-Relation is proposed and validated through a 
case example of Cancer Phenotype Prediction based on miRNAs  
and Genes  
 
Inter-Relation from miRNAs to Genes  augments the Intra-
Relation among Genes,  which leads to better accuracies  and 
perception  in cancer phenotype prediction 

Knowledge Reconstruction/Augmentation  
via Inter-Relation 
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Inter-Relation: Wrap-up 

Conclusion 

111 

Knowledge from Inter-Relation  helps to Complete the 
Incomplete Knowing about Intra-Relation 
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Future works 
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Future Works: Heterogeneity & Hierarchy 

Conclusion 

113 

Hierarchy Heterogeneity 

Biological Data 

& 
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Barabasi, NEJM, 2007 

Future Works: Heterogeneity & Hierarchy 

[Network Medicine] 
 

Complex Networks  
of Direct Relevance  

Heterogeneous types and Hierarchical Structure of Biological Data 
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