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Abstract
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Motivation: Cancer is a complex disease, which is can be dysregulated through multiple
mechanisms. In the past several years, DNA microarrays have been widely used for the
classification of tumor subtypes or clinical outcomes for the diagnosis, treatment or prognosis
of cancer. However, no single level of genomic data fully elucidates tumour behavior since
there are many exceptional variations within or between levels in biological system such as
copy number variants, DNA methylation, alternative splicing, miRNA regulation, post
translational modification, etc.
Results: In the present study, the integrated framework has been proposed for the
classification of several clinical outcomes in different cancer types, glioblastoma multiforme
and ovarian cancer, using multi-layers of genomic data: copy number alteration; DNA
methylation; gene expression; miRNA expression. By the empirical comparison on
heterogeneous genomic data, our results showed that the level of contribution from each
genomic data to various cancer clinical outcomes was relatively different as either structural
changes or functional changes. However, through multi-level genomic data integration
approach, our results indicate that the integration with multi-layers of genomic data is better
for elucidating the cancer clinical outcomes than the model with only single level of genomic
data. With abundance in multi-layers of genomic data and clinical data from many types of
cancer in the near future, our proposed integrative framework will be valuable for better
understanding the underlying tumor behavior, leading to more effective screening strategies
and therapeutic targets.
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Introduction
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Most common and aggressive primary brain tumor in adults

Median survival of one year

One of the hallmarks of GBM is its inherent tendency to recur

Glioblastoma Multiforme (GBM)
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OOvvaarriiaann  ccaanncceerr  ((OOVV))

One of the most common gynecologic malignancies

5th leading cause of cancer mortality in women in the United States

Serous Cystadenocarcinoma

Jemal, et al. Cancer statistics, 2009c
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Why do we need to classify cancers?

The general way of treating cancer is to: 

Categorize the cancers in different classes
Use specific treatment for each of the classes

Classification in Cancer Research

Traditional ways to classify cancers

Morphological appearance
Not accurate !

Enzyme-based histochemical analyses
Immunophenotyping
Cytogenetic analysis
Complicated & need highly specialized laboratories !
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Microarray-based cancer diagnosis

Cancer is caused by changes in the genes that control normal cell growth and death

Molecular diagnostics offer the promise of precise, object, and systematic cancer 
classification

The studies about molecular-based classification of cancer subtypes or clinical outcomes 
using microarray are getting increased
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A multiplex technology used in molecular biology and in medicine

Microarray techniques will lead to a more complete understanding of the molecular 
variations among tumors or clinical outcomes, hence to a more reliable classification

Microarray
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Multi-layers of Genomic Data in Biological System
There are multiple levels in biological system !
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Multi-layers of Genomic Data in Biological System

There are many exceptional variations within or between levels such as CNVs, DNA methylation, 
alternative splicing, miRNA regulation, post translational modification, etc
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Cancer can be dysregulated through multiple mechanisms

Mutations in the coding and non-coding sequences

Changes in the DNA structure and copy number

Modifications to the DNA and histones

Multiple Mechanisms in Cancer

These changes can lead to alterations in

Transcription

Translation

Post-translational modification

Ultimately gene and protein function
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The Cancer Genome Atlas (TCGA)

Clinical Data

Multi-layers of genomic Data

Connecting multiple sources, experiments, and data types
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Genomic data comparison

Which genomic data is more informative?

Motivation

Genomic data integration

Increase the importance of integration more than one source of genome-wide data,
such as genome, epigenome, transcriptome, and proteome

Different genomic data contain partly independent and partly complementary pieces
of biological information

The current increase in the amount of available omics data emphasizes the need for a
methodological integration framework
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This study provide an integrated methodological framework for analyzing multi-layers of 
genomic data

CNA, DNA methylation, gene expression, and miRNA

Purpose of the Study

Integrative molecular-based classification of cancer clinical outcomes
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Data
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TCGA Data

TCGA research network. Nature, 2008
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Available raw and normalized different types of genomic data were retrieved from the
TCGA data portal

Cancer type
Glioblastoma multiforme (GBM)
Serous cystadenocarcinoma (OV)

Size
About 500 GBs

Databasing each level of genomic data for further analysis

Retrieving Multi-level Genomic Data
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Data Description

Data type Platform # Features

CNA Agilent Human Genome CGH 
Microarray 244A

235,829

Methylation Illumina DNA Methylation OMA003 
Cancer Panel 1

1,498

Gene Expression Affymetrix HT Human Genome 
U133 Array Plate Set

12,043

miRNA Agilent 8x15K Human miRNA-
specific microarray

534

GBM
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Data Description

Data type Platform # Features

CNA Agilent SurePrint G3 Human CGH 
Microarray Kit 1x1M

962,434

Methylation Infinium humanmethylation27 
BeadChip

27,578

Gene Expression Affymetrix HT Human Genome 
U133 Array Plate Set

12,043

miRNA Agilent Human miRNA Microarray 
Rel12.0

799

OV
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Select overlap samples among multi-level genomic dataset as an input

Data: Input

Expression miRNAMethylationCNA

S: 262 S:  266S: 235S: 278

F: 534F: 1,498 F:  12,043F: 235,829 

O.S

S: Sample, F: Feature, O.S: Overlap Samples
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Data: Output Variables
Cancer type Clinical 

outcomes
Binary classes # Overlap samples* 

(Neg/Pos)

GBM Survival Short-term survival (survived less than nine m
onths) vs. long-term survival (survived more 
than 24 months)

82 (54 / 28)

Recurrence Initial GBM (Initial diagnosis)                              
vs. recurrent GBM (tumor recurrence)

159 (39 / 120) 

OV Survival Short-term survival (survived less than three 
years) vs. long-term survival (survived more 
than three years)

348 (150 / 198)

Stage Early stage (T1 or T2) 
vs. late stage (T3 or T4)

503 (39 / 464)

Grade Low grade (G1 or G2) 
vs. high grade (G3 or G4)

496 (65 / 431)

* Solid tumor samples from each type of cancer were only considered
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Methods
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Feature selection

Student t-test based feature selection method was used

Data Preprocessing
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Graph-based Semi-Supervised Learning (SSL)

Patient

Association of two patients
(similarities)

- 1

1

?

Normal

Cancer

Patient in question

?

Cancer: 1 Cancer: 1

Normal: -1
Normal: -1

The goal of SSL is to classify unlabeled sample into the right class
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Objective function

Loss condition: In labeled nodes, final output should be closed to the given label

Smoothness condition: 
output

L is called the graph Laplacian matrix where

Graph-based Semi-Supervised Learning (SSL)

SmoothnessLoss

Lffyfyf TT
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Final solution
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Exp-weighted K-NN graphs

Nodes i, j are connected by an edge if i is in j K-nearest-neighborhood or vice versa

d: Euclidean distance

Hyperparameter controls the decay rate

Input for SSL: Weight Matrix (W )

)),(exp( 2

2jidWij
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Multiple graphs from heterogeneous genomic data can be combined

Multi-level Genomic Data Integration
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Shin et al. Bioinformatics, 2007
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Multi-level Genomic Data Integration
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Parameters should be selected by user when learning with SSL

K: K-NN

: SSL

Combination of parameters

K =  {3, 4, 5, 6, 7, 8, 9, 10, 20, 30}

=  {0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 1.0, 10.0, 100.0, 1000.0}

Model Parameter Selection
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AUC (Area Under the ROC Curve)

TP1FP

5-fold cross validation

Experiment: Measurement
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Results
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Preprocessing: Feature Selection Results

Initial tumor vs. Recurrent tumor (GBM)

P_value < Num of 
Features

BEST AUC Avg AUC (Std) K Mu

1.000 235,829 0.4345 0.4231 (   0.0046) 3 0.001

0.100 16,045 0.4631 0.4376 ( 0.0099) 3 0.001

0.050 5,824 0.6119 0.5845 (   0.0244) 7 0.001

0.010 495 0.7488 0.7051 (   0.0197) 10 1,000

0.005 192 0.7500 0.6895 (   0.0396) 3 0.900

0.001 23 0.8131 0.7498 ( 0.0241) 30 0.300

CNA
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Model Parameter Selection

Survival in GBM: Gene expression (p < 0.001)

K

AU
C
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Best AUC Comparison: GBM

Outcome Data type AUC (P-value) TP1FP (%)

Short-term 
survival 

vs. Long-term 
survival

CNA 0.8160 (2.19e-26) 0.30

Methylation 0.7480 (1.19e-28) 0.60

Gene Expression 0.8560 (1.22e-11) 0.72

miRNA 0.7480 (1.07e-28) 0.40

Multi-level data 0.8760 0.80
Initial tumor

vs. Recurrent 
tumor

CNA 0.8131 (3.04e-04) 0.65

Methylation 0.6774 (3.30e-33) 0.20

Gene Expression 0.6667 (2.09e-34) 0.15

miRNA 0.7226 (1.15e-33) 0.43

Multi-level data 0.8369 0.75
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OV

Best AUC Comparison: OV

Outcome Data type AUC (P-value) TP1FP (%)

Short-term 
survival 

vs. Long-term 
survival

CNA 0.6547 (1.24e-28) 0.17

Methylation 0.7251 (1.34e-27) 0.14

Gene Expression 0.7651 (8.96e-10) 0.26

miRNA 0.6403 (1.24e-28) 0.17

Multi-level data 0.7867 0.40
Early stage 
vs. Late stage

CNA 0.8767 (1.87e-05) 0.74

Methylation 0.7149 (1.51e-28) 0.61

Gene Expression 0.8332 (2.31e05) 0.53

miRNA 0.7661 (1.39e-21) 0.78

Multi-level data 0.8932 0.80
Low grade
vs. High grade

CNA 0.8014 (3.43e-05) 0.37

Methylation 0.8161 (4.63e-09) 0.57
Gene Expression 0.7676 (2.59e-06) 0.39

miRNA 0.6887 (9.61e-15) 0.16

Multi-level data 0.8678 0.54
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(A) GBM: Survival
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GBM: Survival

Integration Effect

C: CNA
M: Methylation
E: Expression
R: miRNA
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(B) OV: Grade
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OV: Grade

Integration Effect

C: CNA
M: Methylation
E: Expression
R: miRNA
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Biological Implication
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Performance comparison of genomic data over the five sets of clinical outcome 
classification problem
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Biological Implication
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Both problems concern the structural changes in chromosome by the elapsed amount of 
time since tumor initiation
Therefore, CNA data might have provided an appropriate information for classifying the 
alternative clinical outcomes

Initial tumor vs. Recurrent tumor Early stage vs. Late stage
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The strength of current malignant behavior of tumor is related to the functional 
changes of genes or proteins which can be detected by gene expression data in our 
experimental setting

Long-term survival vs. Short-term survival
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Despite lack of understanding of epigenomic characteristics in cancer, we could suggest 
the structural changes may be worthy of further study

Low grade vs. High grade
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Integration of all genomic data sources can be helpful to unveil the relationship from 
genome to phenome

Integration with multi-level genomic data
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Conclusion



APBC 2011 -- CBI Jan 13, 2011                                           Hyunjung (Helen) Shin 45

Cancer can be dysregulated through multiple mechanisms

The integrative molecular-based classification of clinical outcomes has been applied to 
two cancer types: GBM, OV

Conclusion

Genomic data comparison

Genomic data integration

In order to provide a preliminary insight on the question: 
Which genomic data is more informative?

Various cancer types
Various clinical outcomes

For both cancer types, combining multi-level genomic dataset outperformed the models 
based on data from a single layer of biological information
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Our results emphasize the need for an integrated methodological framework for analyzing 
multi-layers of genomic data for better understanding underlying tumor behavior

Conclusion

Structural state Functional state
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The Second Phase of TCGA  Project
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