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ABSTRACT Training support vector machine (SVM) requires large memory and long time when a 
pattern set is large. To relieve the computational burden, we proposed neighborhood property based 
pattern selection algorithm (NPPS) which selects only the patterns near the decision boundary ahead 
of SVM training (Shin & Cho, 2002, 2003a-2003d). NPPS tries to identify those patterns that are 
likely to become support vectors in feature space. It was very effective: SVM training time was re-
duced by two orders of magnitude with almost no loss in accuracy for various datasets. It has to be 
noted, however, that decision boundary of SVM and support vectors are all defined in feature space 
while NPPS described above operates in input space. If neighborhood relation in input space is not 
preserved in feature space, NPPS may not always be effective. Since running NPPS in feature space is 
impractical, we show that the neighborhood relation is invariant under input to feature space mapping.  
The result now assures that the NPPS will identify those patterns near decision boundary in feature 
space. 
KEYWORDS Support Vector Machine (SVM), Pattern Selection, Neighborhood Relation, Input to 
Feature Space Mapping 
 
 
 
1. Introduction 

In support vector machine (SVM) quadratic programming (QP) formulation, the dimension of kernel 
matrix (M×M) is equal to the number of training patterns (M). A standard QP solver has time com-
plexity of order O(M3): MINOS, CPLEX, LOQO, and MATLAB QP routines. And the solvers using 
decomposition methods approximately have time complexity of T· O(Mq +q3) where T is the number 
of iterations and q is the size of the working set: Chunking, SMO, SVMlight, and SOR (Hearst, 
Schölkopf, Dumais, Osuna, & Platt, 1997; Platt, 1999). Needless to say, T increases as M increases. 
One way to circumvent this computational burden is to select some of training patterns in advance 
which contain most information given to learning. One of the merits of SVM theory distinguishable 
from other learning algorithms is that it is clear that which patterns are of importance to training. 
Those are called support vectors (SVs), distributed near the decision boundary, and fully and suc-

                                            
∗ Corresponding Author, hjshin72@snu.ac.kr

mailto:hjshin72@snu.ac.kr


cinctly define the classification task at hand (Cauwenberghs & Poggio, 2001; Pontil & Verri, 1998; 
Vapnik, 1999). Furthermore, on the same training set, the SVMs trained with different kernel func-
tions, i.e., RBF, polynomial, and tanh, have selected almost identical subset as support vectors 
(Schölkopf, Burges & Vapnik, 1995). Therefore, it is worth finding such would-be support vectors 
prior to SVM training.  
 
Recently, we proposed neighborhood property based pattern selection algorithm (NPPS) (Shin & Cho, 
2002, 2003a). The time complexity of NPPS is O(vM) where v is the number of patterns in the overlap 
region around decision boundary (Shin & Cho, 2003b). We utilized k nearest neighbors to look around 
the pattern’s periphery. The first neighborhood property is that “a pattern located near the decision 
boundary tends to have more heterogeneous neighbors in their class-membership.” The second 
neighborhood property dictates that “an overlap or a noisy pattern tends to belong to a different class 
from its neighbors.” And the third neighborhood property is that “the neighbors of a pattern located 
near the decision boundary tend to be located near the decision boundary as well.” The first one is 
used for identifying those patterns located near the decision boundary. The second one is used for re-
moving the patterns located on the wrong side of the decision boundary. And the third one is used for 
skipping calculation of unnecessary distances between patterns, thus accelerating the pattern selection 
procedure. Fig. 1 visualizes one of the experimental results of artificial problems previously reported. 
The decision boundaries in both figures look quite similar, thus, generalization performance is similar. 
Table I summarizes the empirical results of NPPS reported in (Shin & Cho, 2002, 2003a-2003d). The 
table includes the results obtained from test with artificial datasets and real-world bench-marking data-
sets (http://www.ics.uci.edu/mlearn/, http://yann.lecun.com/exdb/mnist) as well as a marketing dataset 
(http://www.kernelmachines.org/). The results show that NPPS reduced SVM training time up to al-
most two orders of magnitude with virtually no loss of accuracy. 

 

        
  (a) SVM result with all patterns               (b) SVM result with selected patterns 

Fig. 1. 4x4 CHECKERBOARD PORBLEM: decision boundary is depicted as a solid line and the 
margins are defined by the dotted lines in both sides of it. Support vectors are outlined. Figure (a) in-
dicates a typical SVM result of all patterns while (b) stands for that of selected patterns by NPPS. 
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In short, NPPS uses only local neighbor information to identify those patterns likely to be located near 
decision boundary. It has to be noted, however, that decision boundary of SVM and support vectors 
are all defined in feature space while NPPS described above operates in input space. Since the map-
ping from input space to feature space is highly nonlinear and dimension expanding, distortion of 
neighborhood relation could occur. In other words, neighborhood relation in input space may not be 
preserved in feature space. If that is the case, local information in input space may not be correct in 
feature space, thus impairing the effectiveness of NPPS. There are two approaches to solve this prob-
lem. The first involves running NPPS in feature space, and the second involves proving that the 
neighborhood relation is invariant under the input to feature space mapping. Let us consider the first 
approach. In order to compute the distance between two patterns, one has to have the optimal kernel 
function and hyper-parameters, which are usually found by trial-and-error involving multiple trials of 
SVM training with all patterns. Obviously, that is not acceptable since the purpose of pattern selection 
is to avoid training SVM with all patterns. On the other hand, NPPS can be executed only once in in-
put space since it does not involve searching for optimal kernel and hyper-parameters. Thus, we take 
the second approach in this paper: to show that the neighborhood relation is invariant under the input 
to feature space mapping. 
 

Table 1: EMPIRICAL RESULT COMPARISON: ‘*’ stands for that the SVM training of correspond-
ing problems was conducted with a standard QP solver, i.e., Gunn’s SVM MATLAB Toolbox. On the 
contrary, because of heavy memory burden and lengthy training time caused by large training set, oth-
ers were trained with an iterative SVM solver known as one of the fastest solvers, i.e., OSU SVM 
Classifier Toolbox (http://www.kernelmachines.org/). The column, ‘SELECTED’ of Execution Time 
includes SVM training time as well as NPPS running time. 

 Num. Of Trn. Patterns Num. of SVs Execution Time (sec) Test Error (%) 

 ALL SELECTED ALL SELECTED ALL SELECTED ALL  SELECTED

Continuous XOR * 600 179 167 84 454.83    4.06 9.67 9.67

Sine Function * 500 264 250 136 267.76    8.96 13.33 13.33

4x4 Checkerboard 1000 275 172 148   3.81     0.41 4.03 4.66

Pima Indian Diabetes 615 311 330 216 203.91 28.00 29.90 30.30

W-Breast Cancer 546 96 87 41 2.14    0.13 6.80 6.80

MNIST: 3-8  11982 4089 1253 1024 477.25  147.73 0.50 0.45

MNIST: 6-8  11769 1135 594 421 222.84   58.96 0.31 0.31

MNIST: 9-8  11800 1997 823 631 308.73   86.23 3.74 3.85

DMEF4  81226 8871 35529 6624 4820.06  129.29 34.83 35.13

 

2. Proofs on Validity of Pattern Selection in Input Space 

In this section, we prove that the k nearest neighbors of a pattern in the input space I are also the k 

nearest neighbors of the pattern in the feature space Φ. 

http://www.kernelmachines.org/


Definition 1 (kNN Invariance): Let kNNI ( xr ) be the set of k nearest neighbors of a pattern xr  in 

the input space I, and kNNΦ ( xr ) be that of the pattern Φ( xr ) n the feature space Φ. If both sets are 
identical  
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the invariance of the k nearest neighbors holds. 

 
Finding the nearest neighbors implies distance calculation. In terms of the squared Euclidean distance 
which is the most commonly used distance measure, the distance among patterns in the input space I is 
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The distance in the feature space Φ is similarly drawn as  

)()(2)()()()()()( 2 yxyyxxyx
rrrrrrrr

ΦΦΦΦΦΦΦΦ ⋅−⋅+⋅=−                 (2) 
where )(⋅Φ  is a mapping function from the input space to the feature space, ΦΦ aI:)(⋅ . One 
might obtain )(x

r
Φ  directly but the formula is extremely complicated. Thanks to the fact that the 

mapping )(⋅Φ  always appears within a form of inner product during SVM QP calculation, one thus 
uses kernel trick which substitutes the inner product to a kernel function, ),()()( yxKyx

rrrr
=⋅ΦΦ . If this 

kernel trick is applied to Eq.(2), then the distance in the feature space becomes 
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As long as the relative distance magnitude of the input space is preserved in the feature space Φ for all 
patterns, the composition of the k nearest neighbors of a pattern will be invariant. We now define 
proximity invariance and then prove that proximity invariance implies kNN invariance. 
 

Definition 2 (Proximity Invariance): For the patterns xr , 1yr , and 2yr ( 1yx rr
≠ , 2yx rr

≠ , and 21 yy rr
≠ ) 

in the input space I satisfying  
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the invariance of proximity holds if they preserve their relative distances in the feature space Φ,  
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Lemma 1: Proximity invariance implies kNN invariance. 
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Proof: To avoid complication, assume that there do not exist two different neighbors of xr , 1yr , and 2yr , 

such that 2
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denote the ith near-
est neighbor of the pattern xr  in the input space I and that in the feature space Φ, respectively. Then, 
the k nearest neighbors’ set of the pattern xr  in each space is defined from training set D as 
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Now, suppose that the k nearest neighbors’ set of the pattern xr is not invariant, 
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belongs to. Similarly, in the feature space Φ, the following inequality holds 
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Proximity invariance leads Eq.(5) into 
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which is contradictory to Eq.(6). Thus, non-invariance assumption made in Eq.(4) is false. Therefore, 

kNN invariance holds if proximity invariance holds.                                      ▐ 

  

Lemma 2 (Proximity Invariance for RBF Kernel): Proximity invariance holds when the map-
ping function )(xrΦ is defined such that 
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Proof: Let 1yr and 2yr  are two distinct neighbors of xr  with 2
2
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Plugging the definition of RBF kernel, we obtain 
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which in turn can be simplified into 
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This is contradictory to our initial assumption that 1yr is closer to xr  than 2yr . Thus the assumption that 

the invariance of proximity does not hold is not true.                                      ▐   

 
 

Theorem 1: kNN invariance holds for RBF kernel. 

 
Proof: In Lemma 2, we proved that proximity invariance holds for RBF. Due to Lemma 1, kNN in-

variance also holds for the kernel.  
 



3. Conclusion 

In this paper, we proved the k-nearest neighbor invariance under input to feature space mapping. The 
result leads us to conclude that the patterns selected in input space are identical to the patterns selected 
in feature space if neighborhood relation is used. Thus, selecting patterns in input space that are likely 
to be support vectors in feature space is justified. We only provided proof for the case of RBF kernel, 
but proofs for other kernels should be similar in nature. 
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