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Abstract— Training support vector classifiers (SVC) requires
large memory and long cpu time when the pattern set is large.
To alleviate the computational burden in SVC training, we
previously proposed a preprocessing algorithm which selects only
the patterns in the overlap region around the decision boundary,
based on neighborhood properties [8], [9], [10]. Thek-nearest
neighbors’ class label entropy for each pattern was used to
estimate the pattern’s proximity to the decision boundary. The
value of parameter k is critical, yet has been determined by a
rather ad-hoc fashion. We propose in this paper a systematic
procedure to determine k and show its effectiveness through
experiments.

I. I NTRODUCTION

In SVC quadratic programming (QP) formulation, the
dimension of kernel matrix (M ×M ) is equal to the number
of training patterns(M ). Most standard QP solvers have
time complexity O(M3): MINOS, CPLEX, LOQO and
MATLAB QP routines. In order to solve a large scale SVC
QP problem, decomposition methods or iterative methods
have been suggested which break down the large QP problem
into a series of smaller QP problems: Chunking, SMO,
SVMlight and SOR [4], [6]. The general time complexity of
those methods is approximately (the number of iterations)·
O(Mq+q3) whereq is the size of the working set. Of course,
“the number of iterations” increases asM increases.
One way to circumvent this computational burden is to select
only the training patterns, in advance, that are more likely
to be support vectors. The reduced timing data set leads to
reduction in training time (see Fig. 1). In a classification
problem, the support vectors tend to be distributed near the
decision boundary. A considerable amount of research efforts
have been made to select the patterns near the decision
boundary [1], [2], [5], [7].

The approach we recently proposed selected the patterns
near the decision boundary based on the neighborhood prop-
erties [8]. First, a pattern located near the decision boundary
tends to have more heterogeneous neighbors. The degree of
class heterogeneity can be quantified using the entropy value of
neighbors’ class labels. The degree of proximity to the decision
boundary thus can now be estimated by neighbors’ label
entropy. Patterns with a large neighbors’ entropy value are
considered to be close to the decision boundary thus selected
for training. Among them, however, “overlap” patterns are

(a) (b)

Fig. 1. Pattern selection: a large training set shown in (a) is condensed to a
small training set (b) which is composed of only potential support vectors.

also present which result from two class-distributions’ over-
lapping. Of course, genuine noisy patterns are also included.
These patterns have to be identified and removed. The second
property dictates that an overlap or a noisy pattern tends to
belong to a different class from its neighbors. Potential overlap
patterns can be eliminated by the ratio of the neighbors whose
label matches that of the pattern. A smaller ratio indicates
that the pattern is potentially incorrectly labeled. This two step
procedure reduced the number of patterns significantly, thus re-
duced the training time while keeping the SVC accuracy intact.
Table I compares the numbers of patterns and computing times
of SVC with all patterns vs SVC with the selected patterns for
two synthetic data sets [9]. Overall computing time (selection
plus training) was significantly reduced, 30 times for sine
function and 113 times for XOR, while the generalization error
did not increase. The algorithm worked well since “important”
patterns located near the decision boundary were selected for
training as shown in Fig. 2 for sine function problem.

One may compute the neighbors’ label entropy for the
patterns near the decision boundary only, not all training
patterns since the neighbors of the pattern located near
the decision boundary tend to be located near the decision
boundary as well. This lazy evaluation turns the time
complexity from O(M2) to O(vM ), wherev is the number of
patterns in the “overlap” region around the decision boundary
that is enclosed by the overlap patterns located farthest from
the boundary. In most practical problems,v < M holds. A
pattern is assumed to belong to the region if itsk nearest
neighbors belong to more than one class, or itsk nearest
neighbors’ label entropy is positive. Note that parameterk

0-7803-7898-9/03/$17.00 ©2003 IEEE 565



TABLE I

SVC TRAINING RESULT WITH AL L / SELECTED PATTERNS (SEE [9])

Sine Function Continuous XOR
(poly, degree=4, C=100) (rbf, width=1, C=100)

All Selected All Selected
Num. of Trn. Patterns 500 264 600 180
Num. of SVs 250 136 167 84
Test Error (%) 13.33 13.33 9.67 9.67
SVC Trn. Time (sec.) 267.76 8.79 454.83 3.85
Pattern Sel. Time (sec.) - 0.17 - 0.21

(a) SVC with all patterns (b) SVC with selected patterns

Fig. 2. Patterns and SVC decision boundaries of sine Function problem: de-
cision boundary is depicted as a solid line and the margins are defined by the
dotted lines in both sides of it. Support vectors are outlined.

determines the extent with which neighbors are defined. In
our previous studies, it was determined in a rather ad-hoc way.

We propose in this paper a systematic procedure to
determinek. First, the number of patterns located in the
“overlap” region, v, is estimated. Second, we findk such
that the number of the patterns with a positivek nearest
neighbors’ label entropy is larger thanv. We also show
through two experiments that the proposed method estimates
v with a high accuracy and that the number of the patterns
selected using the method is large enough to result in a
comparable classification accuracy.

In section 2, we present the procedure to identify the
patterns that are likely to lie in overlap region. In section 3
and section 4, we provide empirical results supporting our
approach. In the last section, we conclude the paper with the
discussion of the limitations and future work.

II. ESTIMATING OVERLAP PATTERN SETV WITH Bk

In this section, we propose a procedure to identify a
subset of the training pattern setD that matches the overlap
regionR as closely as possible. First, we give definitions of
classifierf(~x), training pattern setD, overlap pattern setV
and overlap regionR as well as positivek nearest neighbors’
entropy pattern setBk. Second, some properties ofBk as
well as the proposed procedure are presented. Finally, an
estimate of the cardinality ofV is presented.

Consider a two-class classification problem whose classes

Fig. 3. Two class classification problem where circles belong to class 1
while squares belong to class 2. The area enclosed by the two dotted lines
comprise the overlap area.

areC1 andC2 (see Fig. 3), with classifierf(~x) such that

f(~x) =
{ ~x → C1 if f(~x) > 0,

~x → C2 if f(~x) < 0,
(1)

and f(~x) = 0 is its decision boundary. LetD denote the set
of training patterns. Let us define “overlap patterns” as the
patterns that are located in the “other” side of the decision
boundary since the class distributions overlap. For simplicity,
we will consider genuine noisy patterns as overlap patterns.
They are shown in Fig. 3 as squares located abovef(~x) =
0 and circles located belowf(~x) = 0. Let R denote a
hypothetical region where the overlap patterns reside, the area
enclosed by the dotted lines in Fig. 3. Note thatR contains
not only the overlap patterns, but also the “close non-overlap”
patterns, those patterns that are located close to the decision
boundary, yet in the “right” side of the decision boundary.
Let V denote the intersection ofD and R, i. e. the subset
of D which comprises overlap patterns and close non-overlap
patterns. There are six patterns in class 1 side and another
six patterns in class 2 side in Fig. 3. The cardinality ofV is
denoted asv.

Now, let Bk denote a subset ofD whose elements have
positivek nearest neighbors’ entropy values (see Fig. 4):

Bk = {~x | NeighborsEntropy(~x, k) > 0, ~x ∈ D}. (2)

Let us consider howk affectsBk and pattern selection based
on it. Too large a value ofk results inexcessive inclusionof
the training patterns. In other words, too many patterns are
selected. Ifk = M − 1, thenBk becomesD. Suppose that
pattern~x belongs toC1. Then its LabelProbability(~x, k) is

P1 =
m1 − 1

m1 + m2 − 1
,

P2 =
m2

m1 + m2 − 1
,

where mj denotes the number of patterns belonging to
Cj , (j = 1, 2). Thus, we havePj < 1 for all j’s. If pattern~x
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LabelProbability(~x, k) {
/* For ~x, calculate the label probabilities
of kNN(~x) over J classes,{C1, C2, . . . , CJ},
wherekNN(~x) is defined as the set of
k nearest neighbors of~x. */
kj = |{~x′ ∈ Cj |~x′ ∈ kNN(~x)}|, j = 1, . . . , J .

return
(
Pj =

kj

k
, ∀j

)
.

}
Neighbors Entropy(~x, k) {

/* Calculate the neighbors-entropy of~x

with its nearest neighbors’ labels.
In all calculations,0 logJ

1
0

is defined to be0. */

Do LabelProbability(~x, k).

return
(∑J

j=1
Pj · logJ

1
Pj

)
.

}

Fig. 4. LabelProbability and NeighborsEntropy

belongs toC2, bothP1 andP2 are less than 1. Remember that
NeighborsEntropy(~x, k) in Fig. 4 is always positive unlessj
exists such thatPj = 1. Therefore, all the patterns in training
set D have positive NeighborsEntropy values, regardless of
their location in the input space, thus become a member of
BM−1. Every pattern fromD is selected for training (see
Fig. 5(a)). Too small a value ofk, e. g.k = 2, on the other
hand, results ininsufficient inclusionof the patterns within the
overlap region. Consider patterns~x1, ~x2 and~x3 in Fig. 5(b),
lying within the overlap region. They all belong to overlap
data setV, but~x2 and~x3 do not belong toB2 while ~x1 does.
First, ~x1 belongs toB since its two nearest neighbors~x2 and
~x3 belong to different classes, which results inP1 = P2 = 1/2
and NeighborsEntropy(~x1, k) becomes1. Second, the two
nearest neighbors of~x2, ~x1 and~x4, both belong to classC1,
which results inP1 = 1, P2 = 0 and NeighborsEntropy(~x2,
k) is 0. So, ~x2 does not belong toB. Third, for the same
reason, either does not~x3. The patterns in the overlap region
is critical to SVC training, since they are likely to be support
vectors. Therefore, the exclusion of them could degrade the
SVC prediction accuracy.

In short, Bk larger thanV merely increases the SVC
training time by introducing redundant training patterns. On
the contrary,Bk smaller thanV could degrade the SVC
accuracy. Therefore, our objective is to find the smallestBk

that coversV. The following property ofBk results in a
simple procedure.

Lemma 1 Bk ⊆ Bk+1 for k = 2, · · · , M − 2.

Proof: DenoteP k
j as the probability thatkj out of k

nearest neighbors belong to classCj . If ~x ∈ Bk , then it means
NeighborsEntropy(~x, k) > 0. A positive NeighborsEntropy
is always accompanied withP k

j = kj

k < 1, ∀j. Therefore,

kj < k, ∀j. (3)

(a) Excessive inclusion:k=M-1

(b) Insufficient inclusion: k=2

Fig. 5. Effect ofk on B: solid dots and squares belong toB.

Adding 1 to both sides yields

(kj + 1) < (k + 1), ∀j. (4)

Suppose(k +1)th nearest neighbor belongs toCj∗ . Then, for
j∗, kj∗ +1 < k +1 holds while forj 6= j∗, kj < k +1 holds.
Therefore, bothP k+1

j∗ < 1 andP k+1
j < 1, ∀j 6= j∗. We have

NeighborsEntropy(~x, k + 1) > 0 which indicates~x ∈ Bk+1 .

From Lemma 1, it follows thatbk, the cardinality ofBk, is
an increasing function ofk. Thus optimalk, k∗, is computed
as

k∗ = min{k | bk ≥ v, k = 2, . . . , M − 1 }. (5)

Now, we need to estimatev. Every training pattern that
we encounter can be regarded as an independently sampled
pattern from a training data distribution. Then, the probability
that v patterns ofM training patterns fall within regionR is
given by the binomial law,

Pr(v) =
M !

v!(M − v)!

(
PR(~x)

)v(
1− PR(~x)

)M−v

. (6)

wherePR(~x) denotes the probability that a pattern~x lies in
R. We now can calculatev as

v = MPR(~x). (7)
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HerePR(~x) of ~x can be described as

PR(~x) =
2∑

j=1

P (~x ∈ R, Cj), (8)

whereP (~x ∈ R, Cj) is the joint probability of~x belonging
to classCj and lying inR. We divide the regionR into R1

andR2 as follows:

R1 = {~x ∈ R | f(~x) ≥ 0},
R2 = {~x ∈ R | f(~x) < 0}. (9)

Eq. (8) can be rewritten as

PR(~x) = P (~x ∈ R, C1) + P (~x ∈ R, C2)

= P (~x ∈ R1 ∪R2, C1) + P (~x ∈ R1 ∪R2, C2)

=
(

P (~x ∈ R1, C2) + P (~x ∈ R2, C1)
)

+
(

P (~x ∈ R1, C1) + P (~x ∈ R2, C2)
)

.

(10)

The first parenthesis and second parenthesis denote the proba-
bilities that patterns located inR are incorrectly and correctly
classified, respectively. IfR1 and R2 contain roughly the
same number of correct and incorrect patterns, the probabilities
of the two parentheses become same. Since all the overlap
patterns were included inR, the first parenthesis actually
refers to the misclassified error of classifierf(~x), or P (error).
Now, Eq. (10) can be simplified as

PR(~x) = 2P (error), (11)

and Eq. (7) becomes

v = 2MP (error). (12)

Now, the procedure to determine the optimalk value is as
follows:

1) Apply 1-NN rule over training setD.

2) EstimateP (error) with P̂ (error), the training error rate
of 1).

3) Calculatev̂ according to Eq. (12):
v̂ = 2MP̂ (error).

4) Find k∗ according to Eq. (5):
k∗ = min{k | bk ≥ v̂, k = 2, . . . , M − 1 }.

Reasons for using1-NN rule to estimateP (error) include its
simplicity and computational efficiency.

III. SYNTHETIC DATA EXPERIMENTS

In the first experiment, we examined whether the proposed
method gave a reasonably accurate estimation forv. A total
of 1,000 (=M ) patterns, 500 from each class, were randomly
generated from a pair of two-dimensional uniform distribu-
tions:

C1 =
{
~x | U

([ −1
( 0− 1

2
v

1000
)

]
< ~x <

[
1

(1− 1
2

v
1000

)

]) }
,

C2 =
{
~x | U

([ −1
(−1 + 1

2
v

1000
)

]
< ~x <

[
1

(0 + 1
2

v
1000

)

]) }
.

TABLE II

ESTIMATION OF v FOR VARIOUS OVERLAP DEGREES

v 100 200 300 400 500 600 700 800 900 1000
v̂ 112 202 334 414 512 602 706 806 882 942
bk∗ 115 209 339 429 518 606 708 816 906 972
k∗ 5 4 5 4 5 5 5 5 5 5

We used 10 training pattern sets corresponding to 10
different numbers of overlap patterns, i.e.v= 100, 200,· · · ,
900, 1000.

Table II provides the estimation results for various values of
v. The second row shows the estimated values ofv̂. They are
almost identical to the true values ofv. The proposed method
gave reasonably accurate estimation ofv. The last two rows
show the smallestbk larger thanv̂, and the corresponding
value of k. Approximately,k=5 seems to cover the overlap
region regardless of the different degrees of overlap.
The optimal value ofk is likely to be dependent on the
underlying distribution rather than the degree of overlap itself.

The second one is a continuous XOR problem. The patterns
of two classes were defined as follows:

C1 =
{
~x | ~x ∈ C1A ∪ C1B ,

[ −3
−3

]
≤ ~x ≤

[
3
3

]}
,

C2 =
{
~x | ~x ∈ C2A ∪ C2B ,

[ −3
−3

]
≤ ~x ≤

[
3
3

]}

whereC1A, C1B , C2A andC2B were

C1A =
{
~x | N

([
1
1

]
,
[

0.52 0
0 0.52

]) }
,

C1B =
{
~x | N

([ −1
−1

]
,
[

0.52 0
0 0.52

]) }
,

C2A =
{
~x | N

([ −1
1

]
,
[

0.52 0
0 0.52

]) }
,

C2B =
{
~x | N

([
1

−1

]
,
[

0.52 0
0 0.52

]) }
.

A total of 600 training patterns, 300 from each class,
were generated: There are about33% training patterns in the
overlap region (v=199). The density of patterns gets sparser
when it goes closer to the decision boundary. A total of
1000 test patterns were generated from the statistically same
distributions as in its training sets.

The proposed method estimatedv as 208 (̂v=208). And
the value of k was set as 5 sinceb5 was the minimum
over 208 (k∗=5 and bk∗=217). See Fig. 6. In order to test
whether the selected pattern set taken fromBk∗ will give rise
to a reasonable SVC performance, we generated 29 selected
pattern sets corresponding tok=2, . . ., 30, and then we
computed the SVC test error rates of the 29 sets. The 14.1%
reference test error rate was obtained from the SVC trained
with all 600 training patterns, among which 162 were picked
as support vectors. We set the SVC error tolerance value as
C=20 and used the RBF kernel with width parameterσ=0.5.
The parameter values were fixed over all 30 SVCs. Fig. 6
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Fig. 6. Number of Patterns:̂v, bk , and SVs

Fig. 7. SVC test error rate

shows that, whenv is fixed, the increase ofk induced the
increase ofbk. The number of selected patterns was slightly
less thanbk, but it also gradually increased almost parallel
to the curve ofbk. The number of support vectors was also
given at the bottom. Fork > 5, it converged to about 78,
which is only half of the 162 SVs that were picked when
trained with the full training data set. That is, only a subset
of training patterns affected SVC training regardless of the
number of training patterns. Meanwhile, the reason why only
78 SVs were adopted can be explained by “NeighborsMatch
criterion” that identifies and removes those patterns that are
suspected to be overlap patterns [9]. Those overlap patterns
were adopted as SVs in the original SVC by its error tolerance
parameter, but they hardly contributed to margin constitution.
Fig. 7 displays the test error rates for 30 different SVCs.
The SVC performance was stabilized fork larger than 5 at
which the test error rate was 14.1%. It is almost same as
the reference test error rate. A larger pattern set thanB5 did
not lead to better SVC performance since they included the
redundant patterns which did not contribute to SVC training.
An evidence can be found from the number of support vectors
in Fig. 6. Fromk=5 to k=30, the number of support vectors
did not increase much from 75 to 83 while the number of the
selected patterns increased by more than two times from 179 to

(a) All patterns

(b) Selected patterns (k=5)

Fig. 8. Patterns and SVC decision boundaries: decision boundary is depicted
as a solid line and the margins are defined by the dotted lines in both sides
of it. Support vectors are outlined.

405. Finally, Fig. 8 shows the decision boundaries and margins
of the SVCs (a) with all patterns and (b) with the selected
patterns withk=5. Note that the two decision boundaries are
quite similar. The selected patterns fromB5 were sufficient
enough to result in the same classification accuracy as the
original SVC.

IV. REAL WORLD DATA EXPERIMENTS

We also applied the proposed approach to two real world
datasets [11]: Pima Indian Diabetes and Wisconsin Breast
Cancer. We conducted 5-fold cross validation (CV). According
to Eq. (12), v values for the two datasets were estimated
as 393 and 108 from P(error)=32.0% and P(error)=9.9%,
respectively. The value ofk was determined bybk which was
just larger than̂v: k = 4 in Pima Indian Diabetes andk = 6
in Wisconsin Breast Cancer (see Fig. 9). We chose a quadratic
polynomial SVC kernel and the error tolerance parameter
C=100 for Pima Indian Diabetes, and a cubic polynomial
kernel and C=5 for Wisconsin Breast Cancer. Fig. 10 depicts
the average SVC CV error rates. In Pima Indian Diabetes, the
SVC performance was stabilized at about 30.0% fork larger
than 4, and in Wisconsin Breast Cancer, 6.7% fork larger
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(a) Pima Indians Diabetes (b) Wisconsin Breast Cancer

Fig. 9. Number of patterns:̂v, bk , and SVs

(a) Pima Indians Diabetes (k=4) (b) Wisconsin Breast
Cancer (k=6)

Fig. 10. SVC CV error rates

than 6. The results are similar to those from the synthetic
data experiments. Table III compares the average execution
times and the performances of SVC with all patterns vs SVC
with the selected patterns. In both datasets, the average SVC
training time was reduced from 203.91 (sec) to 27.86 (sec),
and from 2.14 (sec) to 0.03 (sec), respectively, but on the
other hand, the SVC performances were almost reserved.

V. CONCLUSION

In this paper, we proposed how to determine parameterk,
the number of neighbors, to complete the pattern selection
algorithm. We presented a definition of the overlap regionR
first, followed by a derivation ofv, the number of patterns
in the overlap region. Finally, by1-NN rule estimation for
v in R, we determinedk. Through the experiments on two

TABLE III

SVC TRAINING RESULTS WITH ALL / SELECTED PATTERNS

Num. of Num. of Pattern Sel. SVC trn.SVC CV
Trn. patterns SVs time (sec) time (sec)error (%)

Pima Indian Diabetes
All 615 330 - 203.91 29.9

Selected (k = 4) 311 216 0.24 27.86 30.3
Wisconsin Breast Cancer

All 546 87 - 2.14 6.8
Selected (k = 6) 96 41 0.10 0.03 6.7

synthetic and two real world problems, we justified the
proposed method.

Currently, we just applied the proposed method to a
two-class problem under the assumption thatR1 and R2

contain roughly a same number of correct and incorrect
patterns. Therefore, further extension for more general cases
will be conducted.
Another candidate for future work is concerned with
the input dimensionality. In the proposed algorithm, a
pattern’s proximity to the decision boundary is estimated
by the diversity of itsk neighbors’ class labels. A higher
dimensionality usually requires a largerk value, or more
neighbors to be considered. The error rate of 1-NN rule
in a higher dimensional space increases, but in a much
less degree [3]. Combination of these gives rise to an
underestimation of the number of the patterns in the overlap
region by the 1-NN rule (see Eq. (12)) which in turn results in
an underestimation ofk. A preliminary experiment involving
MNIST datasets with input vectors of 784 dimension confirms
the observation. The proposed method resulted in ak value
less than 10 while a much better SVC performance was
obtained with ak value larger than 50 [9]. An extension or
a modification to the proposed approach is deemed necessary
to handle the high dimensionality.
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