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Abstract— Training support vector classifiers (SVC) requires

large memory and long cpu time when the pattern set is large. |Class1o o, DSuppm Eliss 1,
To alleviate the computational burden in SVC training, we °o o .4/ Vectors
previously proposed a preprocessing algorithm which selects only ° ° Py

the patterns in the overlap region around the decision boundary,
based on neighborhood properties [8], [9], [10]. Thek-nearest
neighbors’ class label entropy for each pattern was used to
estimate the pattern’s proximity to the decision boundary. The
value of parameter & is critical, yet has been determined by a

rather ad-hoc fashion. We propose in this paper a systematic Decltion Boundaryy ©  Class 3 ——_—
procedure to determine k and show its effectiveness through
experiments. (a) (b)

Fig. 1. Pattern selection: a large training set shown in (a) is condensed to a
|. INTRODUCTION small training set (b) which is composed of only potential support vectors.

In SVC quadratic programming (QP) formulation, the
dimension of kernel matrix X/ x M) is equal to the number also present which result from two class-distributions’ over-
of training patterns{/). Most standard QP solvers havdapping. Of course, genuine noisy patterns are also included.
time complexity O(/3): MINOS, CPLEX, LOQO and These patterns have to be identified and removed. The second
MATLAB QP routines. In order to solve a large scale SV@roperty dictates that an overlap or a noisy pattern tends to
QP problem, decomposition methods or iterative methotiglong to a different class from its neighbors. Potential overlap
have been suggested which break down the large QP probleatterns can be eliminated by the ratio of the neighbors whose
into a series of smaller QP problems: Chunking, SMQabel matches that of the pattern. A smaller ratio indicates
svmlight and sor [4], [6]. The general time complexity ofthat the pattern is potentially incorrectly labeled. This two step
those methods is approximatelh¢ number of iterations procedure reduced the number of patterns significantly, thus re-
O(M q+ ¢3) whereq is the size of the working set. Of courseduced the training time while keeping the SVC accuracy intact.
“the number of iterations” increases a$ increases. Table | compares the numbers of patterns and computing times
One way to circumvent this computational burden is to seleet SVC with all patterns vs SVC with the selected patterns for
only the training patterns, in advance, that are more liketwo synthetic data sets [9]. Overall computing time (selection
to be support vectors. The reduced timing data set leadsplgs training) was significantly reduced, 30 times for sine
reduction in training time (see Fig. 1). In a classificatiofunction and 113 times for XOR, while the generalization error
problem, the support vectors tend to be distributed near tiigl not increase. The algorithm worked well since “important”
decision boundary. A considerable amount of research effop@tterns located near the decision boundary were selected for
have been made to select the patterns near the decidi@ining as shown in Fig. 2 for sine function problem.
boundary [1], [2], [5], [7]. One may compute the neighbors’ label entropy for the

patterns near the decision boundary only, not all training

The approach we recently proposed selected the pattepagterns since the neighbors of the pattern located near
near the decision boundary based on the neighborhood prtge decision boundary tend to be located near the decision
erties [8]. First, a pattern located near the decision bounddrgundary as well. This lazy evaluation turns the time
tends to have more heterogeneous neighbors. The degreeamhplexity from O(/2) to O@M), wherev is the number of
class heterogeneity can be quantified using the entropy valugatterns in the “overlap” region around the decision boundary
neighbors’ class labels. The degree of proximity to the decisitimat is enclosed by the overlap patterns located farthest from
boundary thus can now be estimated by neighbors’ laktble boundary. In most practical problems,< M holds. A
entropy. Patterns with a large neighbors’ entropy value apattern is assumed to belong to the region if itsearest
considered to be close to the decision boundary thus seleateijhbors belong to more than one class, orkitsiearest
for training. Among them, however, “overlap” patterns areeighbors’ label entropy is positive. Note that paraméter
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TABLE |

SVC TRAINING RESULT WITH AL L / SELECTED PATTERNS (SEE[9])

A ) Class 1

Sine Function Continuous XOR
(poly, degree=4, C=100) (rbf, width=1, C=100)
All Selected All Selected
Num. of Trn. Patterns 500 264 600 180
Num. of SVs 250 136 167 84
Test Error (%) 13.33 13.33 9.67 9.67
SVC Trn. Time (sec.) 267.76 8.79 454.83 3.85
Pattern Sel. Time (sec)) - 0.17 0.21

Class 2

f@lo N

Fig. 3. Two class classification problem where circles belong to class 1
while squares belong to class 2. The area enclosed by the two dotted lines
comprise the overlap area.

(a) SVC with all patterns

(b) SVC with selected patterns
areC; andC; (see Fig. 3), with classifief(Z) such that
Fig. 2. Patterns and SVC decision boundaries of sine Function problem: de- .
cision boundary is depicted as a solid line and the margins are defined by the o Z—Cy if f(@) >0,
dotted lines in both sides of it. Support vectors are outlined. f(;z:) = { Z—Cy if f(f) <0, )

and f(Z) = 0 is its decision boundary. LdD denote the set

of training patterns. Let us define “overlap patterns” as the
determines the extent with which neighbors are defined. hatterns that are located in the “other” side of the decision
our previous studies, it was determined in a rather ad-hoc wagundary since the class distributions overlap. For simplicity,

we will consider genuine noisy patterns as overlap patterns.

We propose in this paper a systematic procedure They are shown in Fig. 3 as squares located abf\® =

determinek. First, the number of patterns located in th® and circles located below () = 0. Let R denote a
“overlap” region, v, is estimated. Second, we find such hypothetical region where the overlap patterns reside, the area
that the number of the patterns with a positikenearest enclosed by the dotted lines in Fig. 3. Note tiRatcontains
neighbors’ label entropy is larger tham We also show not only the overlap patterns, but also the “close non-overlap”
through two experiments that the proposed method estimagesterns, those patterns that are located close to the decision
v with a high accuracy and that the number of the patter@dundary, yet in the “right” side of the decision boundary.
selected using the method is large enough to result inLat V denote the intersection d® and R, i. e. the subset
comparable classification accuracy. of D which comprises overlap patterns and close non-overlap

patterns. There are six patterns in class 1 side and another

In section 2, we present the procedure to identify theix patterns in class 2 side in Fig. 3. The cardinality\ofis

patterns that are likely to lie in overlap region. In section @enoted as.
and section 4, we provide empirical results supporting our
approach. In the last section, we conclude the paper with theNow, let B, denote a subset dD whose elements have
discussion of the limitations and future work. positive k nearest neighbors’ entropy values (see Fig. 4):

B = {& | NeighborsEntropy(Z, k) > 0, Z € D}.  (2)

[l. ESTIMATING OVERLAP PATTERN SETV WITH By, Let us consider hovk affectsB;, and pattern selection based
an it. Too large a value of results inexcessive inclusionf

In this section, we propose a procedure to identify 3 .
subset of the training pattern sBt that matches the overlapt € training patterns. In other words, too many pattems are
elected. Ifk = M — 1, thenB; becomesD. Suppose that

regionR as closely as possible. First, we give definitions ot - . . )
classifier (&), training pattern seD, overlap pattern seV patternz’ belongs toCy. Then its LabelProbabilityf, k) is

and overlap regioR as well as positivgs nearest neighbors’ P = my — 1
entropy pattern seBj;. Second, some properties &, as my+mg — 1’
well as the proposed procedure are presented. Finally, an Py = m2

my +mg — 1’
where m; denotes the number of patterns belonging to
Consider a two-class classification problem whose classgs (j = 1,2). Thus, we haveP; < 1 for all j's. If patternz

estimate of the cardinality oV is presented.
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LabelProbability( 7, &) { Class 1 *
/* For Z, calculate the label probabilities .
of KNN(Z) over J classes{Ci, Ca, ..., Cs}, ? . "l ",

where kNN(Z) is defined as the set of
k nearest neighbors af. */

k; = {7 € Cj|F € kNN@)}|, j=1,...,J. eesies s
k. . . ! ‘\\
return (Pj =3, Vj). b ™ a .~ Selected s
1 N 0 Patterns ™
e - n

Neighbors Entropy(Z, k) { n n

Decision Boundary Class 2

[* Calculate the neighbors-entropy &f
with its nearest neighbors’ labels.
In all calculations,OlogJ% is defined to be). */

(a) Excessive inclusionk=M-1

Class 1 Omitted ©
ilitv( 2 Patterns ..
Do LabelProbability( Z, k). _‘

J
return (Zj:l P; -logs Pi]) 3 o
} N Overlap
o -

>.” Region
Fig. 4. LabelProbability and NeighbarSntropy X °

belongs taCs, both P; and P, are less than 1. Remember that - { o
NeighborsEntropy(, k) in Fig. 4 is always positive unless = - R
exists such thaP; = 1. Therefore, all the patterns in training Decision Boundary Class 2
setD have positive NeighborEntropy values, regardless of (b) Insufficient inclusion: k=2

their location in the input space, thus become a member of Fig. 5. Effect ofk on B: solid dots and squares belong B
B,;_1. Every pattern fromD is selected for training (see

Fig. 5(a)). Too small a value of, e. g.k = 2, on the other

hand, results innsufficient inclusiorof the patterns within the ) . .

overlap region. Consider patter®s, 2 andz® in Fig. 5(b), Adding 1 to both sides yields

lying within the overlap region. They all belong to overlap , .

data sefV, but #2 and#® do not belong tdB, while #' does. (kj +1) < (k+1), ¥j. “)
First, 2! b9|0ngs toB since its two nearest nE|gth?§ and Supposqk_F 1)th nearest neighbor be|ongs @* Then, for
73 belong to different classes, which resultsin= P, = 1/2 j§*, kj- +1 < k+1 holds while forj # j*, k; < k+1 holds.
and NeighborsEntropy(@', k) becomesl. Second, the two Therefore, bothPffl <1 and p]kH <1, Vj # j*. We have

nearest neighbors af?, #!' andi*, both belong to clas€’i, NeighborsEntropy, k + 1) > 0 which indicatest € By ;.
which results inP; = 1, P, = 0 and NeighborsEntropy(?, u
k) is 0. So, #* does not belong td3. Third, for the same
reason, either does n@®. The patterns in the overlap region From Lemma 1, it follows thaby, the cardinality ofBy, is
is critical to SVC training, since they are likely to be supporj | increasing funétion of. Thus o’ptimalk Lt is compl;ted
vectors. Therefore, the exclusion of them could degrade tég ' Y

SVC prediction accuracy.

In short, B;, larger thanV merely increases the SVC k* =min{k | by > v, k=2, ..., M -1} )
training time by introducing redundant training patterns. On ] o
the contrary, B, smaller thanV could degrade the SvC Now, we need to estimate. Every training pattern that
accuracy. Therefore, our objective is to find the smal@gt W€ encounter can be regarded as an independently sampled

that coversV. The following property ofB, results in a Pattem from a training data distribution. Then, the probability
simple procedure. that v patterns ofM training patterns fall within regioR is

given by the binomial law,

Lemmal By CBy,,fork=2,---,M—2. M v M—v
Proof: Denote P! as the probability that; out of k. Pr(v) = m (PR(S?)> (1 - PR(f)) . (8
nearest neighbors belong to cl&ss If © € By, then it means ’ ’

NeighborsEntropy(#, k) > 0. A positive NeighborsEntropy where Pr () denotes the probability that a pattefnlies in
is always accompanied witﬁf}C = ’% < 1, Vj. Therefore, R. We now can calculate as

ki <k, V5. (3) v = M Pr(%). 7
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TABLE I

Here Pr (%) of Z can be described as
ESTIMATION OF v FOR VARIOUS OVERLAP DEGREES

2
Pr(%) = Z P(Z € R,C)), (8) v [100 200 300 400 500 600 700 800 900 1000
— o |11z 202 334 414 512 602 706 806 882  94p
R 3 . bee |115 200 339 420 518 606 708 816 906 97P
where P(z € R, () is the joint probability ofz’ belonging k¥ |5 4 5 4 5 5 5 5 5 5

to classC; and lying inR. We divide the regioR into R,
and R, as follows:

Ri = {ZeR|[f(@) =0}, (99 We used 10 training pattern sets corresponding to 10
Ry, = {ZeR|[f(@) <0} different numbers of overlap patterns, ize= 100, 200, - - ,
Eg. (8) can be rewritten as 900, 1000.
Pr(@) = P(@€R,C1) + P(F € R, C3) Table Il provides the estimation results for various values of
= P(Z € R; URy,C) 4+ P(# € Ry UR», Cs) v. The second row shows the estimated values.dfhey are
(10) almost identical to the true values of The proposed method

= (P(@ € Ry, Co) + P(T € Ra, C1) gave reasonably accurate estimationvofThe last two rows

show the smallesb, larger thand, and the corresponding
value of k. Approximately, k=5 seems to cover the overlap

The first parenthesis and second parenthesis denote the prp3ion regardless of the different degrees of overlap.
bilities that patterns located iR are incorrectly and correctly The optimal value ofk is likely to be dependent on the
classified, respectively. IR, and R, contain roughly the underlying distribution rather than the degree of overlap itself.

same number of correct and incorrect patterns, the probabilities ) )
of the two parentheses become same. Since all the overlag "€ S&cond one is a continuous XOR problem. The patterns

patterns were included iR, the first parenthesis actually©f o classes were defined as follows:
refers to the misclassified error of classifiger), or P(error). Cy = {f |#eCiaUCrp { -3 } <z< {
Now, Eq. (10) can be simplified as T

+ P(fER1,01)+P(fER2,CQ)

Cr= {F|7eCoabCom, [ §]<a<]

Pgr(Z) = 2P(erron), (11)
and Eq. (7) becomes whereC1 4, Cig, Cax andCayp were

v = 2M P(error). (12) Cha = {:E’| N ([ } } 7 [ 0.52 0.%2 D }7

Now, the procedure to determine the optirdalalue is as . -1 052 0
follows: Cp = {1: N ([ -1 } ’ [ 0 05 D }’
1) Apply 1-NN rule over training seD. Cpp — {f| N ([ -1 } 7 [ 0.52 o2 D }7

2) EstimateP(error with P(error), the training error rate 1 0.(;2 O'S
of 1). Co= {FIN([ 2 ].[% o)}

A total of 600 training patterns, 300 from each class,
were generated: There are ab8at% training patterns in the
overlap region 4=199). The density of patterns gets sparser
when it goes closer to the decision boundary. A total of
1000 test patterns were generated from the statistically same
distributions as in its training sets.

3) Calculated according to Eq. (12):
© = 2M P(erron).

4) Find k* according to Eq. (5):
k* =min{k | by >0, k=2, ..., M—1}.

Reasons for usind-NN rule to estimateP(error) include its

simplicity and computational efficiency. The proposed method estimatedas 208 ¢=208). And

the value ofk was set as 5 sincés; was the minimum
I1l. SYNTHETIC DATA EXPERIMENTS over 208 {*=5 andbg-=217). See Fig. 6. In order to test

In the first experiment, we examined whether the proposl@@emer the sbeilecst;a/(épatt?rn set taken fi5m wil g(;vc;grlsel q
method gave a reasonably accurate estimatiorvfok total fo a reasonable performance, we generate selecte

of 1,000 (V) patterns, 500 from each class, were random ttern Zetﬁ cg\r/rgspondmg =2, f h30’zgand th%r: VXZ 1%
generated from a pair of two-dimensional uniform distripuomputed the test error rates of the 29 sets. The 14.1%
-1

tions: reference test error rate was obtained from the SVC trained
ions: _ L . :
. . 1 with all 600 training patterns, among which 162 were picked
Cr = {CE | U ([ (012 } <z < [ (1- ) D }, as support vectors. We set the SVC error tolerance value as
. 1 . 1 C=20 and used the RBF kernel with width paramete0.5.
Gy = {l’ |U ([ (—1+ 42 } <T< [ 0+ 3725) D } The parameter values were fixed over all 30 SVCs. Fig. 6
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Number of Pattems: ©, by, Selected, SVs

Value of k
Fig. 6. Number of Patterng}, by, and SVs

—— SVC with selected pattermns
L e SVC with all pattems

-SVCy=14.1

- PN - e
14 gt g

N
L1z 'SVCG;;=14.1 i L
2 i 13 2h 2 3 (b) Selected patternsk=5)

Value of k
) Fig. 8. Patterns and SVC decision boundaries: decision boundary is depicted
Fig. 7. SVC test error rate as a solid line and the margins are defined by the dotted lines in both sides
of it. Support vectors are outlined.

SVC Test Error Rate (%)

shows that, wher is fixed, the increase of induced the 4o5 Finally, Fig. 8 shows the decision boundaries and margins
increase ofty. Th_e number of sele_cted patterns was slightlys 1he svCs (a) with all patterns and (b) with the selected

less thanby, but it also gradually increased almost parallelaierns withk=5. Note that the two decision boundaries are

to the curve ofb,. The number of support vectors was alsgite similar. The selected patterns frdBy were sufficient

given at the bottom. Fok > 5, it converged to about 78, gnough to result in the same classification accuracy as the
which is only half of the 162 SVs that were picked Whe%riginal SVC.

trained with the full training data set. That is, only a subset
of training patterns affected SVC training regardless of the
number of training patterns. Meanwhile, the reason why only
78 SVs were adopted can be explained by “Neighbddesch
criterion” that identifies and removes those patterns that aréWe also applied the proposed approach to two real world
suspected to be overlap patterns [9]. Those overlap pattedagsasets [11]: Pima Indian Diabetes and Wisconsin Breast
were adopted as SVs in the original SVC by its error toleran@ancer. We conducted 5-fold cross validation (CV). According
parameter, but they hardly contributed to margin constitutiom Eqg. (12),v values for the two datasets were estimated
Fig. 7 displays the test error rates for 30 different SVCas 393 and 108 from P(error)=32.0% and P(error)=9.9%,
The SVC performance was stabilized ferlarger than 5 at respectively. The value df was determined b¥;, which was
which the test error rate was 14.1%. It is almost same pst larger thany: £ = 4 in Pima Indian Diabetes ankl= 6

the reference test error rate. A larger pattern set #Bardid in Wisconsin Breast Cancer (see Fig. 9). We chose a quadratic
not lead to better SVC performance since they included tpelynomial SVC kernel and the error tolerance parameter
redundant patterns which did not contribute to SVC trainin@€=100 for Pima Indian Diabetes, and a cubic polynomial
An evidence can be found from the number of support vectdesrnel and C=5 for Wisconsin Breast Cancer. Fig. 10 depicts
in Fig. 6. Fromk=5 to k=30, the number of support vectorshe average SVC CV error rates. In Pima Indian Diabetes, the
did not increase much from 75 to 83 while the number of tH8VC performance was stabilized at about 30.0%#darger
selected patterns increased by more than two times from 179han 4, and in Wisconsin Breast Cancer, 6.7% forlarger

IV. REAL WORLD DATA EXPERIMENTS
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synthetic and two real world problems, we justified the

b ]
: e B b proposed method.
T Selected s e
450 i . '
L48=3m Currently, we just applied the proposed method to a
by = 308 -

340

Num. of Selected

two-class problem under the assumption tiag and Ro
Pattems (& =4): 311 =108

L contain roughly a same number of correct and incorrect

R, of S | patterns. Therefore, further extension for more general cases
ttems =0):

o Lm0 will be conducted.
s« s a =Yy Another candidate for future work is concerned with

300

100
20

200

150

Number of Pattems: 0, b, Selected, SVs

Number of Pattems: #, by, Selected, SVs

Value of & Vaezofl & the input dimensionality. In the proposed algorithm, a
(8) Pima Indians Diabetes (b) Wisconsin Breast Cancer pattern’s proximity to the decision boundary is estimated
Fig. 9. Number of patterns?, by, and SVs by the .d|ver3|ty of itsk ne|ghbors’ class labels. A higher
dimensionality usually requires a largér value, or more
neighbors to be considered. The error rate of 1-NN rule
R S — L+ SVC with seleeted gariems in a higher dimensional space increases, but in a much
sfc SVC with all patiems s A SVC with all paticms less degree [3]. Combination of these gives rise to an
sl gp> underestimation of the number of the patterns in the overlap
"é E 2 region by the 1-NN rule (see Eq. (12)) which in turn results in
i i s an underestimation of. A preliminary experiment involving
& ALADLN A 8 SVCe =67 MNIST datasets with input vectors of 784 dimension confirms
8} [ ¥ Lan SAVARNSGE o VAR ) 10 A
2| svey=m9 B B “  the observation. The proposed method resulted in\alue
25 = 0. .
o less than 10 while a much better SVC performance was
2 5 o 15 20 .o} 30} 2 5 10 15 20 r. 30| H H H
e e obtamgt_j w.|th ak value larger than 50 [9].. An extension or
(@) Pima Indians Diabetes k=4) ) Wisconsin  Breast a modification to the proposed approach is deemed necessary

Cancer (=6) to handle the high dimensionality.

Fig. 10. SVC CV error rates

than 6. The results are similar to those from the synthetic
data experiments. Table Il compares the average execution
times and the performances of SVC with all patterns vs SMd Almeida, M. B., Braga, A. and Braga J. P., “SVM-KM: speeding SVMs

; earning with a priori cluster selection and k-mearBroc. of the 6th
with the selected patterns. In both datasets, the average SVdBrazilian Symposium on Neural Networkm. 162167, 2000,

training time was reduced from 203.91 (sec) to 27.86 (Se@)} choi, S. H. and Rockett, P., “The Training of Neural Classifiers with Con-
and from 2.14 (sec) to 0.03 (sec), respectively, but on the densed Dataset/EEE Transactions on Systems, Man, and Cybernetics-

PART B: Cybernetigsvol. 32, no. 2, pp. 202-207, 2002.
other hand, the SVC performances were almost reserved. . o' 5 aner 3"V and Vidal, E.. “Considerations About Sample-

Size Sensitivity of a Family of Edited Nearest-Neighbor RuléBEEE
Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics
vol. 29, no. 4, pp. 667-672, 1999.
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