
Observational Learning with Modular Networks

Hyunjung Shin, Hyoungjoo Lee and Sungzoon Cho

{hjshin72, impatton, zoon}@snu.ac.kr
Department of Industrial Engineering, Seoul National University,

San56-1, ShilimDong, Kwanakgu, Seoul, Korea, 151-742

Abstract. Observational learning algorithm is an ensemble algorithm
where each network is initially trained with a bootstrapped data set
and virtual data are generated from the ensemble for training. Here we
propose a modular OLA approach where the original training set is par-
titioned into clusters and then each network is instead trained with one
of the clusters. Networks are combined with different weighting factors
now that are inversely proportional to the distance from the input vec-
tor to the cluster centers. Comparison with bagging and boosting shows
that the proposed approach reduces generalization error with a smaller
number of networks employed.

1 Introduction

Observational Learning Algorithm(OLA) is an ensemble learning algorithm that
generates “virtual data” from the original training set and use them for training
the networks [1] [2] (see Fig. 1). The virtual data were found to help avoid over-

[Initialize] Bootstrap D into L replicates D1, . . . DL.
[Train]
Do for t = 1, . . . , G

[T-step] Train each network :

Train jth network ft
j with Dt

j for each j ∈ {1, . . . , L} .
[O-step] Generate virtual data set Vj for network j :

V t
j = {(x′,y′)|x′ = x+ �, ε ∼ N(0, Σ),x ∈ Dj ,

y
′ =

∑L

j=1
βjf

t
j (x

′) where βj = 1/L}.
Merge virtual data with original data :
Dt+1

j = Dj ∪ V t
j .

End
[Final output] Combine networks with weighting factors β’s :

fcom(x) =
∑L

j=1
βjf

T
j (x) where βj = 1/L.

Fig. 1. Observational Learning Algorithm (OLA)

fitting, and to drive consensus among the networks. Empirical study showed that

K.S. Leung, L.-W. Chan, and H. Meng (Eds.): IDEAL 2000, LNCS 1983, pp. 126−132, 2000.
 Springer-Verlag Berlin Heidelberg 2000



the OLA performed better than bagging and boosting [3]. Ensemble achieves the
best performance when the member networks’ errors are completely uncorrelated
[5]. Networks become different when they are trained with different training data
sets. In OLA shown Fig. 1, bootstrapped data sets are used. Although they are
all different, they are probabilistically identical since they come from the identi-
cal original training data set. In order to make them more different, we propose
to “specialize” each network by clustering the original training data set and us-
ing each cluster to train a network. Clustering assigns each network a cluster
center. These centers are used to compute weighting factors when combining
network outputs for virtual data generation as well as for recall.

The next section presents the proposed approach in more detail. In Sections 3
and 4, experimental results with artificial and real-world data sets are described.
The performance of the proposed approach is compared with that of bagging and
boosting. Finally we conclude the paper with a summary of result and future
research plan.

2 Modular OLA

The key idea of our approach lies in network specialization and its exploitation
in network combining. This is accomplished in two steps. First is to partition the
whole training set into clusters and to allocate each data cluster to a network.
Second is to use the cluster center locations to compute the weighting factors in
combining ensemble networks.

2.1 Data set partitioning with clustering

The original data set D is partitioned into K clusters using K-means clustering or
Self Organizing Feature Map (SOFM). Then, a total of K networks are employed
for ensemble. Each cluster is used to train each network (see [Initialize] section of
Fig. 2). Partitioning the training data set helps to reflect the intrinsic distribution
of the data set in ensemble. In addition, exclusive allocation of clustered data sets
to networks corresponds to a divide-and-conquer strategy in a sense, thus making
a learning task less difficult. Partitioning also solves the problem of choosing the
right number of networks for ensemble. The same number of networks is used as
the number of clusters. The problem of determining a proper number of ensemble
size can be thus efficiently avoided.

2.2 Network combining based on cluster distance

How to combine network outputs is another important issue in ensemble learning.
Specialization proposed here helps to provide a natural way to do it. The idea
is to measure how confident or familiar each network is for a particular input.
Then, the measured confidence is used as a weighting factor for each network
in combining networks. The confidence of each network or cluster is considered
inversely proportional to the distance from input vector x′ to each cluster center.

127Observational Learning with Modular Networks



[Initialize]
1. Cluster D into K clusters, with K-means algorithm or SOFM,

D1, D2, . . . , DK with centers located at C1, C2, . . . , CK, respectively.
2. Set the ensemble size L equal to the number of clusters K.

[Train]
Do for t = 1, . . . , G

[T-step] Train each network :

Train jth network ft
j with Dt

j for each j ∈ {1, . . . , L}.
[O-step] Generate virtual data set for each network j :

V t
j = {(x′,y′)|x′ = x+ �, ε ∼ N(0, Σ),x ∈ Dj ,

y′ =
∑L

j=1
βjf

t
j (x

′) , where βj = 1/dj(x
′)

and dj(x
′) =

√
(x′ −Cj)TΣ

−1
j (x′ −Cj) }.

Merge virtual data with original data :
Dt+1

j = Dj ∪ V t
j .

End
[Final output] Combine networks with weighting factors β’s :

fcom(x) =
∑L

j=1
βjf

T
j (x) where βj = 1/dj(x

′).

Fig. 2. Modular Observational Learning Algorithm (MOLA)

For estimation of the probability density function(PDF) of the training data set,
we use a mixture gaussian kernels since we have no prior statistical information
[6] [7] [8]. The familiarity of the jth kernel function to input x′ is thus defined
as

Θj(x
′) =

1

(2π)d/2|Σj |1/2 exp{−1

2
(x′−Cj)

TΣ−1
j (x′−Cj)}, (j = 1, . . . , L). (1)

Taking natural logarithms of Eq. 1 leads to

logΘj(x
′) = −1

2
log |Σj | − 1

2
(x′ −Cj)

TΣ−1
j (x′ −Cj), (j = 1, . . . , L). (2)

Assuming Σj = Σ′
j , for j 6= j′ , makes a reformulated measure of the degree of

familiarity dj(x
′),

logΘj(x
′) ∝ d2

j(x
′) (3)

where dj(x
′) =

√
(x′ −Cj)TΣ

−1
j (x′ −Cj).

So, each network’s familiarity turns out to be proportional to be negative Ma-
halanobis distance between an input vector and the center of the corresponding
cluster. The network whose cluster center is close to x′ is given more weight in
combining outputs. The weighting factor βj is defined as a reciprocal of the dis-
tance dj(x

0) and βj = 1/dj(x
′), both in [O-step] and [Final output] as shown

in Fig. 2. Compare it with Fig. 1 where simple averaging was used with βj of
1/L.

128 H. Shin, H. Lee, and S. Cho



3 Experimental result I: artificial data

The proposed approach was first applied to an artificial function approxima-
tion problem defined by y = sin(2x1 + 3x2

2) + ε, where ε is from a gaussian
distribution N(0, 0.052I). Each input vector x was generated from one of four
gaussian distributions N(Cj , 0.3

2I), where {(x1,x2)|(−0.5,−0.5), (0.5,−0.5), (−0.5,

0.5), (0.5, 0.5)}. A total of 320 data points were generated, with 80 from each clus-
ter. Some of the data points are shown in Fig. 3. The number of networks was also
set to 4. Note that clustering was not actually performed since the clustered data
sets were used. Four 2-5-1 MLPs were trained with the Levenberg-Marquardt
algorithm for five epochs.

T-step and O-step were iterated for 4 generations. At each generation, 80
virtual data were generated and then merged with the original 80 training data
for training in the next generation. Note that the merged data set size does
not increase at each generation by 80, but instead stays at 160 since the virtual
data are replaced by new virtual data at each generation. For comparison, OLA,
simple-averaging bagging and adaboost.R2 [4] were employed. For bagging, three
different ensemble sizes were tried, 4, 15 and 25. For boosting, the ensemble size
differs in every run. We report an average size which was 36. Experiments were
run 50 times with different original training data sets. Two different test data sets
were employed, a small set for a display purpose and a large set for an accurate
evaluation purpose. The small test set consists of 25 data points with their ID
numbers, shown in Fig. 3 (LEFT). The mesh shown in Fig. 3 (RIGHT) shows
the surface of the underlying function to be approximated while the square dots
represent the output values of the proposed approach MOLA (modular OLA)
for test inputs. MOLA’s accuracy is shown again in Fig. 4 where 25 test data
points are arranged by their ID numbers. Note the accuracy of MOLA compared
with other methods, particularly at cluster centers, i.e. 7, 9, 17 and 19. Bagging
used 25 networks here. For those inputs corresponding to the cluster centers, the
familiarity of the corresponding network is highest.

The large test set consists of 400 data points. Table 1 summarizes the result
with average and standard deviation of mean squared error (MSE) of 50 runs.
In terms of average MSE, OLA with 25 networks was best. If we consider MSE
and ensemble size together, however, MOLA is a method of choice with a rea-
sonable accuracy and a small ensemble. Since every network in an ensemble is
trained, the ensemble size is strongly related with the training time. Bagging
achieved the same average MSE with MOLA by employing more than 6 times
more networks. MOLA did better than OLA-4, thus OLA seems to need more
networks than MOLA to achieve a same level of accuracy. Of course, there is an
overhead associated with MOLA, i.e. clustering at initialization. A fair compar-
ison of training time is not straightforward due to difference in implementation
efficiency. Boosting performed most poorly in all aspects. The last row displays
p-value of pair-wise t-tests comparing average MSEs among methods. With a
null hypothesis of “no difference in accuracy” and a one-sided alternative hy-
pothesis “MOLA is more accurate than the other method,” a smaller p-value

129Observational Learning with Modular Networks



leads to acceptance of the alternative hypothesis. Statistically speaking, MOLA
is more accurate than OLA-4, bagging-4 and boosting, but not others.

Fig. 3. [LEFT] Artificial data set generated from 4 gaussian distributions with a white
noise. Each set is distinguished by graphic symbols. [RIGHT] Simulation results on 25
test data points: the mesh is the surface of the underlying function to be approximated
while the square-dots represent the test output values from MOLA.

Fig. 4. 25 test data points are arranged by their ID numbers along x-axis. Note the
MOLA’s accuracy near the cluster centers (7,9,17,19) compared with that of bagging
and boosting.

4 Experimental result II: real-world data

The proposed approach was applied to real-world regression problems: Boston
Housing [9] and Ozone [10]. Both data sets were partitioned into 10 and 9
clusters with K-means algorithm, respectively. These, 10 13-10-1 MLPs and 9
8-10-1 MLPs were trained with L-M algorithm, respectively. The test results are

130 H. Shin, H. Lee, and S. Cho



Table 1. Experimental Results (Artificial Data)

50 runs MOLA OLA Bagging Boosting

Ensemble Size 4 4 15 25 4 15 25 Avg(36)

Avg MSE(10−2) 5.4 6.5 4.8 4.7 7.3 5.4 5.4 10.5
Std MSE(10−2) 4.0 2.0 0.9 0.8 3.0 2.7 1.3 9.2
P-value(T-test) - 0.04 0.87 0.90 0.01 0.99 1.00 0.00

summarized in Table 2. For Boston housing problem, MOLA outperformed both
bagging and boosting (0 p-values). For Ozone problem, MOLA outperformed
boosting but not bagging.

Table 2. Experimental Results (RealWorld Data)

Boston Housing Ozone

Tr/Val/Test 200/106/100 200/30/100

30 runs MOLA Bagging Boosting MOLA Bagging Boosting

Ensemble Size 10 25 Avg(48) 9 25 Avg(49)

Avg MSE(10−2) 9.3 10.3 10.9 19.2 19.0 21.0
Std MSE(10−2) 0.89 0.96 1.39 0.94 0.65 0.82
P-value(T-test) - 0.00 0.00 - 0.79 0.00

5 Conclusions

In this paper, we proposed a modular OLA where each network is trained with
a mutually exclusive subset of the original training data set. Partitioning is
performed using K-means clustering algorithm. Then, a same number of net-
works are trained with the corresponding data clusters. The networks are then
combined with weighting factors that are inversely proportional to the distance
between the new input vector and the corresponding cluster centers.

The proposed approach was compared with OLA, bagging, and boosting in
artificial function approximation problems and real world problems. The MOLA
employing a smaller number of networks performed better than OLA and bag-
ging in artificial data. The MOLA did better in one real data and similarly in
the other real data. This preliminary result shows that the approach is a good
candidate for problems where data sets are clustered well.

Current study has several limitations. First, a more extensive set of data sets
have to be tried. Second, in clustering, the number of clusters is hard to find
correctly. The experiments done so far produced a relatively small number of
clusters, 4 for artificial data and 10 and 9 for real world data. It is worthwhile to
investigate the test performance with a larger MOLA ensemble. Third, weighting

131Observational Learning with Modular Networks



factors are naively set to the distance between input vector and cluster centers.
An alternative would be to use the weighting factors inversely proportional to
the training error of the training data close to the input vector.

Acknowledgements
This research was supported by Brain Science and Engineering Research Program

sponsored by Korean Ministry of Science and Technology and by the Brain Korea 21

Project to the first author.

References

[1] Cho, S. and Cha, K., “Evolution of neural network training set through addition of
virtual samples,” International Conference on Evolutionary Computations, 685–
688 (1996)

[2] Cho, S., Jang, M. and Chang, S., “Virtual Sample Generation using a Population
of Networks,” Neural Processing Letters, Vol. 5 No. 2, 83–89 (1997)

[3] Jang, M. and Cho, S., “Observational Learning Algorithm for an Ensemble of
Neural Networks,” submitted (1999)

[4] Drucker, H., “Improving Regressors using Boosting Techniques,” Machine Learn-
ing: Proceedings of the Fourteenth International Conference , 107–115 (1997)

[5] Perrone, M. P. and Cooper, L. N., “When networks disagree: Ensemble methods
for hybrid neural networks,” Artificial Neural Networks for Speech and Vision ,
(1993)

[6] Platt, J., “A Resource-Allocating Network for Function Interpolation,” Neural
Computation , Vol 3, 213–225 (1991)

[7] Roberts, S. and Tarassenko, L., “A Probabilistic Resource Allocating Network for
Novelty Detection,” Neural Computation , Vol 6, 270–284 (1994)

[8] Sebestyen, G. S., “Pattern Recognition by an Adaptive Process of Sample Set
Construction,” IRE Trans. Info. Theory IT-8 , 82–91 (1962)

[9] http://www.ics.uci.edu/∼ mlearn
[10] http://www.stat.berkeley.edu/users/breiman

132 H. Shin, H. Lee, and S. Cho


	1 Introduction
	2 Modular OLA
	2.1 Data set partitioning with clustering
	2.2 Network combining based on cluster distance

	3 Experimental result I: arti cial data
	4 Experimental result II: real-world data
	5 Conclusions
	Acknowledgements
	References

