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Abstract— Predicting protein function is a central problem in
bioinformatics, and many approaches have been suggested that use
partially or fully automated methods based on various combination
of sequence, structure, and other information on proteins or genes.
Such information establishes relationships between proteins that can
be modeled most naturally as edges in graphs. A priori, however, it
is often unclear which edges from which graph may contribute most
to accurate predictions. For that reason, one established strategy is
to integrate all available sources, or graphs, in the hope that the
positive signals will add to each other. However, in the problem of
functional prediction, noise, i.e. the presence of inaccurate or false
edges, can still be large enough that integration alone has little effect
on prediction accuracy. In order to reduce noise levels and to improve
integration efficiency, we present here a method in graph-based
learning, graph sharpening, which provides a theoretically firm yet
intuitive and practical approach for disconnecting undesirable edges
from protein similarity graphs. This approach has several attractive
features: it is quick, scalable in the number of proteins, robust
with respect to errors, and tolerant of very diverse types of protein
similarity measures. We tested the classification accuracy in a test set
of 599 proteins with remote sequence homology spread over 20 Gene
Ontology (GO) functional classes. When compared to integration
alone, graph sharpening plus integration of four vastly different
molecular similarity measures improved the overall classification by
nearly 30% (0.17 average increase in ROC score). Moreover, and
partially through the increased sparsity of the graphs induced by
sharpening, this gain in accuracy came at negligible computational
cost: sharpening and integration took on average4.66(±4.44) CPU
seconds.
∗ Both authors contributed equally to this work.

1. INTRODUCTION

The prediction of biological function is a central challenge
in modern biology since few genomic or proteomic data
have detailed annotations [1]. A new class of computer aided
solutions to this problem is currently emerging that aims
to integrate diverse sources of relevant information, rather
than relying only on single methods, which have specific
limitations [2], [3], [4]. Function information may come in
many forms, ranging from genomic and molecular to cellular
and tissue contexts. The unprecedented availability of data
from primary to tertiary protein structure in particular mo-
tivated many methods that use computational comparisons of
specific molecular attributes to define functional relationships
[5]. From this a clearer signal for function prediction may
emerge by considering multiple relevant relationships.

A natural model of relationships between proteins is a
network (or graph), where nodes depict genes or proteins

and edges represent their possible interactions or correlations
[6], [7], [8], [9] (see Fig.1). Among these there are networks

Fig. 1. A graph model of relationships between proteins. Nodes depict genes
or proteins and edges represent their possible interactions or correlations,
e.g., molecular similarities extracted from sequence or structure comparisons.
An annotated protein is labelled either by ‘+1’ or ‘−1’, indicating either it
belongs to a particular functional class or not. Graph-based function prediction
seeks to classify the unannotated (unlabelled) proteins marked as ‘? ’.

of weighted edges that value molecular similarity between
protein pairs extracted from sequence or structure comparisons
and classify or predict protein function [10], [11], [12], [13].
Recently, it was shown that graphs based on semi-supervised
learning [14], [15] have better classification performance
for sequence similarity networks over conventional local se-
quence comparison [16]. This suggests that graph based semi-
supervised learning can capture global network information
that is functionally relevant. Later, and in a more general
approach, multiple protein networks were then combined into
a single computationally efficient semi-supervised learning
problem and this further improved functional classification
over individual networks [17].

Here, we further extend these ideas to improve the
annotation of protein function based on graphs. Starting
from a diverse set of protein similarity measures, some that
are standard and based on sequence and others that are
more novel and based on structure, we apply a graph-based
algorithm to integrate them. Compared to previous work [17],
the novelty of this approach lies in taking into explicit account
the directionality of edges in each graph through a method
that we call “graph sharpening” [18]. With a test set of 15
out of 20 functional GO terms among 599 non-redundant
protein structures from the PDBselect25 list [19], we show
that sharpening and integration raise the overall classification
performance by nearly 30%. In absolute values, an average
increase of the Receiver Operating Characteristic (ROC) score



by 0.17 up to a level of0.75.

This paper is organized as follows. We introduce graph-
based semi-supervised learning in section 2. In section 3, the
basic idea and some elements of the mathematical framework
behind graph sharpening are explained [18]. In section 4,
we present a specific graph-integration approach which uses
linear combinations of graph Laplacian matrices [17]. Then,
we demonstrate how these methods can be successfully applied
to protein function prediction (section 5). We conclude with
some future work remarks.

2. GRAPH-BASED L EARNING

In the graph-based Semi-Supervised Learning algo-
rithm [14], a data pointxi (i = 1, . . . , n) is represented as
a nodei in a graph, and the relationship between data points
is represented by an edge where the connection strength from
each nodej to each other nodei is encoded in elementwij

of a weight matrixW . A weight wij can take a binary value
(0 or 1) in the simplest case. Often, a Gaussian function of
Euclidean distance between points, with length scaleσ, is used
to specify connection strength:

wij =
{ exp

(
− (xi−xj)

>(xi−xj)
σ2

)
if i ∼ j,

0 otherwise.

Thei ∼ j stands for nodei andj having an edge between them
which can be established either byk nearest neighbors or by
Euclidean distance within a certain radiusr, ||xi−xj ||2 < r.
1 The labelled nodes have labelsyl ∈ {−1, 1}, while the
unlabeled nodes have zerosyu = 0. Our algorithm will
output ann-dimensional real-valued vectorf = [f>l f>u ]> =
(f1, · · · , fl, fl+1, · · · , fn=l+u)> which can be thresholded to
make label predictions onfl+1, . . . , fn after learning. It is
assumed that (a)fi should be close to the given labelyi in
labelled nodes, and (b) overall,fi should not be too different
from the fj of adjacent nodes (i ∼ j). One can obtainf by
minimizing the following quadratic functional [20], [21], [14]:

min
f

(f − y)>(f − y) + µfT Lf , (1)

wherey = (y1, . . . , yl, 0, . . . , 0)>, and the matrixL, called
the graph Laplacian matrix[22], is defined asL = D −W
whereD = diag(di), di =

∑
j wij . The first term corresponds

to the loss functionin terms of condition (a), and the second
term represents thesmoothnessof the predicted outputs in
terms of condition (b). The parameterµ trades off loss versus
smoothness. The solution of this problem is obtained as

f = (I + µL)−1y (2)

whereI is the identity matrix.
The values off are obtained by solvinga large sparse

linear systemy = (I + µL)f . This numerical problem has
been intensively studied, and there exist efficient algorithms,

1We represent scalars as lower case, vectors as boldface lower case, and
martrices are uppercase.0 (or 1) is a vector or matrix of variable-dependent
size containing of all zeros (or ones).

of which computational time is nearly linear in the number
of nonzero entries in the coefficient matrix [23]. Therefore,
computation gets faster as the Laplacian matrix gets sparser.

3. GRAPH SHARPENING

Next we present a method which is directly applicable
to the weight matrixW , and motivated by the following
intuition: in an undirected graph as in Fig.1, all connections
are reciprocated and so the matrix of edge weightsW is
symmetric as shown in Fig.2(a). However, whenW describes
relationships between labelled and unlabelled points, it is
not necessarily desirable to regard all such relationships as
symmetric. That is, we may differentiate the importance
of information flow so far equally weighing all edges.
First, some edges may convey more useful information in
one direction (e.g. from labelled to unlabelled) than in the
reverse direction. Propagating information in the reverse
direction, from unlabelled to labelled, may be undesirable
since it allows points about which information is uncertain
to corrupt the source of information in the system. Since we
are already using the language of “points” and “edges”, we
will say that this causes the point and its outgoing edges to
be “blunted”, reducing their effectiveness. There are many
problem settings (for example, protein function prediction
and other applications in the field of bioinformatics) in
which (a) there is a high degree of certainty about the
input space representation of each labelled point and its
label, and (b) the number of labelled points is low. In
this situation, it is indicated to avoid blunting, thus to
preserve the effectiveness of information sources.Second,
edges directly connecting oppositely labelled points may
propagate unhelpful information in either direction. The
smoothness condition in Eq.(1) plays the role of forcing
both predicted scores to be similar to each other, and again,
both important points, the very sources of information, are
blunted. Further, those edges unnecessarily incur a conflict
of the opposite flows in the area of a high certainty in the
system.Third, propagation of information between unlabelled
points is different—while some edges of the graph may be
more helpful than others in solving the overall problem, a
priori we do not know which these might be. Allowing the
unlabelled points to harmonize with their neighbours (thus
implementing smoothness condition) common to most such
learning approaches) is a desirable process.

Fig.2 illustrates how this intuition is realized by graph
sharpening. Fig.2(a) shows an original graph of seven nodes
(points) and its (so far) symmetric weight matrixW . For
simplicity, we set the value of ‘1’ as a weight on every edge.
The row index inW denotes the destination and the column
index the source, sowij reads “the weight of the edgefrom j to
i (j −→ i).” In Fig.2(b), the edges from unlabelled to labelled
pointswij (denoted as dotted arrows) are disconnected where
i belongs to the set of labelled pointsl := {1, 2, 3} and j to
the set of unlabelled pointsu := {4, 5, 6, 7}. Fig.2(c) presents
the case of connection between oppositely labelled points,



(a) (b) (c)

Fig. 2. Graph sharpening: (a) an original undirected (bi-directed) graph and its symmetric weight matrixW . Note that in the interpretation ofW , the row
index denotes the destination and the column index the source —so for examplewij should be read as “the weight of the edgefrom j to i (j −→ i).
(b) Edges from unlabelled to labelled points (denoted as dotted arrows) are disconnected. (c) Edges between oppositely labelled points are further removed.
Sharpening leaves the edges between unlabelled points intact. In contrast to the original in Fig.1, thesharpenedgraph is no longer fully reciprocated and so
the matrix of edge weightsW becomes asymmetric.

w12 andw21. Therefore, both edges are further removed from
Fig.2(b). Finally, we obtain asharpenedgraph in Fig.2(c).
Note that the weight matrix becomes asymmetric, and the
edges between unlabelled points remain intact.2 A detailed
mathematical foundation ofsharpeningis given in [18]. Let
us give a schematic flow of the proof. We pose the general
question: what ifW is not considered fixed? Is it possible to
change some or all of thewij such that our algorithm performs
better? We begin by re-formulating the objective function
Eq.(1) in terms ofW , which is based on the formulation of
[21]. Blockwise consideration of the weight matrix,

W =
[

Wll Wlu

Wul Wuu

]

allows us to state a condition which solutionsW must satisfy
if the objective function is to be optimized —there are many
such solutions. Exploring every class of solutions is currently
regarded as intractable and is left as an open problem. How-
ever, we can specify one simplead hocsolution, concordant
with the intuition already stated. By settingWll to a non-
negative diagonal matrix (including null matrix) andWlu to
0 such as

Ws =
[

diagonal matrix 0
Wul Wuu

]
(3)

(see the finalW in Fig.2(c)), we obtain the output prediction
for unlabelled data points

fu = µ(I + µ(Duu −Wuu))−1Wulyl. (4)

In spreading activation network terms, Eq.(4) is equivalent to
activity being propagated from labelled to unlabelled dataonce
(Wulyl) to set the initial condition for subsequent spreading

2Instead of disconnecting or removing an edge fromW , we can penalize an
undesirable edge weights by introducing a penalty term,wNEW

ij = wij − δij

where0 ≤ δij ≤ wij .

activation amongu ↔ u, analogous to Eq.(2) but now
excluding the labelled points. This also has intuitive appeal.
First, for labelled points, it assuresf l = yl— there is no
loss of information on labelled data points. By disconnecting
unnecessary and unhelpful edges, we allow the labelled points
and their outgoing edges to stay “sharp” in their influence
on the rest of the graph. Second, for unlabelled points, it
preserves an important principle of SSL, namelyexploitation
of the manifold structure inferred from unlabelled data points,
by keeping the edges,u ↔ u and l → u, of W .

4. GRAPH I NTEGRATION

Given a node set of proteins, there are several ways to
represent edges. For example, edges can be defined from from
amino acid sequences, or from structures, or from protein-
protein interactions. Therefore, many possible graphs exist,
and each graph can be partly independent from and partly
complementary to others. It can be often difficult to decide
which graph will perform best for function prediction for
unlabelled proteins, and individual graphs (from single data
sources) are often not sufficient for reliable prediction. One
way to enhance reliability may be to integrate the given
multiple graphs. Integrating multiple graphs stands for finding
an optimum value of the linear combination coefficient for the
individual graphs. In the semi-supervised learning framework,
this translates to finding the combination coefficientsα for
the individual Laplacians, as shown in Fig.3. Recently, [17]
proposed to extend Eq.(1) of a single graph to multiple graphs

min
f ,γ

(f − y)>(f − y) + µγ, (5)

s.t. f>Lkf ≤ γ, k = 1, . . . , K,

whereK is the number of graphs and anLk is the correspond-
ing graph Laplacianto graphGk. This formulation is related



Fig. 3. Graph integration: Every single graphGk can solely be used for label prediction. However since different graphs contain partly independent and
partly complementary pieces of information, integrating them into one may increase the reliability of predictions. In semi-supervised learning framework,
graph integration stands for finding an optimum value of the linear combination coefficientα for individual graph LaplaciansLk.

to the illustration in Fig.3 through its dual problem

min
α

y>(I +
K∑

k=1

αkLk)−1y, s.t.
∑

k

αk ≤ µ (6)

and its output prediction

f = (I +
K∑

k=1

αkLk)−1y. (7)

5. FUNCTION PREDICTION EXPERIMENTS

5.1. Data

In automated protein functional class classification, accurate
detection of functional relationships beyond close sequence
homology is desirable. Thus, we have restricted our selection
to protein chains from the PDBselect25 list (version October
2004), where any pair shares no more than 25% sequence
identity. Functional information was assigned in terms of the
Gene Ontology (GO) in the category ‘Molecular function’
and mapped to PDB structures through the gene ontology
annotation database (GOA PDB 24.0). We chose the 20 highly
populated GO categories as in [13]. Of all PDBselect25 chains,
599 proteins shares at least one of these functional GO terms
(Table I). Therefore, we took them as our experimental protein
set.

To generate weighted edges between nodes (or proteins),
we used four different computational measures of molecular
similarity. Each measure assigned to every protein pair(i, j)
a positive weight (0 ≤ wij ≤ 1) meaning the degree of
molecular similarity between chaini andj. The four different
similarity measures are Basic Local Alignment and Search
Tool (BLAST, [24]), the standard approach to alignment of
primary sequence which resulted in a degree of sequence
identity; length-corrected Contact Metric (CM, [25]), a metric
based similarity score by considering vector representations
of contacts from the entire tertiary structure; Fast Alignment
and Search Tool (FAST, [26]), an accurate and computation-
ally efficient 3D geometrical alignment algorithm calculat-
ing positive similarity scores; Evolutionary Trace Annotation
(ETA, [27]), a method that measures similarity based on local
similarity of protein substructure, specifically 3D-templates
that are small structural motifs of evolutionarily important
residues. Our choice represented all currently and commonly
used approaches to protein similarity measurement [5]: Se-
quence alignment (BLAST), global 3D alignment (FAST),

TABLE I

20 FUNCTIONAL GENE ONTOLOGY TERMS FROM THE CATEGORY

‘M OLECULAR FUNCTION’. GO TERMS WITH LESS THAN TEN PROTEINS

WERE EXCLUDED (ASTERISK MARK).

GO term Molecular function
Number of

proteins
0003677 DNA binding 137
0005515 Protein binding 49
0016491 Oxidoreductase activity 39
0005524 ATP binding 95
0003723 RNA binding 50
0006118 Electron transport 87
0003676 Nucleic acid binding 63
0003824 Catalytic activity 57
0005198 Structural molecule activity 22
0005509 Calcium ion binding 32
0000287 Magnesium ion binding 3∗
0008270 Zinc ion binding 56
0005489 Electron transporter activity 37
0004872 Receptor activity 7∗
0016798 Hydrolase activity 0∗
0004519 Endonuclease activity 9∗
0004871 Signal transducer activity 18
0004672 Protein kinase activity 29
0004518 Nuclease activity 5∗
0004867 Serine-type endopeptidase inhibitor activity 15

local 3D alignment of small motifs (ETA), and alignment-
independent vector based approaches (CM). An edge-weight
from BLAST/CM/FAST is a continuous value while that of
ETA is a binary value from a support vector classifier, i.e.,
the edge-weight between two proteins is set to 1 (wij = 1)
if they were predicted functionally related; no edge (wij = 0)
otherwise.

5.2. Results

Since one protein can belong to several GO categories,
we posed a binary-class classification problem for each
GO term in TableI. The GO categories having only a few
labelled proteins (less than 10) were excluded; therefore, our
experiment became 15 binary-class classification problems,
determining membership or non-membership of unannotated
(unlabelled) proteins for the respective GO terms. For a GO
term, we calculated the five-fold cross-validation (5 CV) ROC
(receiver operating characteristic) score as a performance
measurement. The ROC score indicates the area under the
ROC curve which plots true positive rate (sensitivity) as a
function of false positive rate (1-specificity) for all possible
thresholds, see Fig.6. A ROC score of 0.5 corresponds to



random guessing, while an ROC score of 1.0 implies the
algorithm successfully outputs a higher predicted value for
any positive example than that for any negatives example
(perfect classification).

We compared the proposed method–integration on sharp-
ened graphs, with the four individual graphs obtained from
BLAST, FAST, CM, and ETA, respectively, and also with the
previous method of [17]–integration on original graphs. In
every comparison, we examined the performance change in
terms oforiginal vs. sharpenedand individual vs. integrated.
This setting enabled us to see the effect of the proposed
method from two separate viewpoints,sharpeningand inte-
gration. The value of smoothing parameterµ–from Eq.(2) of
original, Eq.(4) ofsharpening, and Eq.(7) ofintegration– was
obtained by 5CV searching overµ ∈ {0.1, 1, 5, 10, 50, 100}.
For each of the available settings per GO category, we com-
pared the results at their best parameters. A table with the
best parameters is published at the Internet address (http://

mammoth.bcm.tmc.edu/biocomp2007/ ), were the software
and supplementary material can be retrieved. Remarkably,
sharpeningdoes not include any additional parameters, nor
integration–the linear combination coefficientα in Eq.(7) is
automatically set as a solution of the optimization.

1) Graph Sharpening on Individual Graphs:Fig.4(a) shows
the distribution of 300 (= 15 GO terms× 5 CVs× 4 graphs)
ROC score pairs from the original (unsharpened) and sharp-
ened graphs. Most dots are scattered above the diagonal, thus
indicating better performance of the sharpened graphs against
originals. Asign teststatistically rejected the null hypothesis,
“the distribution would be evenly scattered below and above
the diagonal,” with significant confidence (p < 9 × 10−16).
Table II confirms this result: on average, sharpening increases
the original ROC scores by 0.03 (ETA) upto 0.12 (FAST).

2) Integrated Graph vs. Individual Graphs:The next test
was whether individual prediction in sharpened graphs could
be further improved through theirintegration as stated in
section 4. Fig. 4(b) shows that this was the case: 222 of the
300 ROC score pairs are above the diagonal (p < 9× 10−16).
In Fig. 5 the average over 5CV ROC scores are assigned
to their function classes. The figure assures thatintegration
on sharpened graphs achieves the highest ROC scores when
compared with theindividuals (sharpened), except for GO
0003677 (DNA binding) and GO 0008270 (Zinc ion binding).
Integration effect on sharpened individual graphs show more
significance and less volatility than the effect of integration on
the original (unsharpened) networks (Table II): 0.09 (± 0.04)
vs. 0.02 (± 0.08) in average ROC score increase.

3) Proposed Method vs. Previous Method:In the third test,
we verified how integration on sharpened graphs upgrades the
performance of the previous method [17],integration alone,
so to speak. The results show that sharpening significantly
contributes to ROC score improvement, see Fig.4(c); 70 out
of 75 ROC pairs are in the upper diagonal (p < 3 × 10−18).
Integration alone can be insignificant and even worse (see,
value 0.02 ± 0.08 in Table II), particularly if given graphs
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Fig. 6. ROC curve for GO 0003824 (‘Catalytic activity’) shows that graph
sharpening and integration reliably discriminates enzymes (catalytic proteins)
from non-enzymes. Insert: the distribution of predicted values (scores),f , for
the unlabelled proteins– an enrichment of enzymes toward larger values is
evident.

are noisy, which can often be the case in protein similarity
networks. But with sharpening, integration becomes more
effective, which is reflected by a ROC score increase of
0.17 ± 0.08, see Table II. Hence, given the performance of
single unsharpened (original) graphs, one can raise the ROC
score as much as0.17 ± 0.08 by applying integration with
sharpening.

4) Enrichment: Fig.6 shows a typical ROC curve of the
proposed method for GO 0003824 ‘Catalytic activity’. The
curve shows that sharpening and integration can reliably
discriminate enzymes (catalytic proteins) from non-enzymes
among proteins with less than25% sequence similarity. The
inner figure shows the distribution of predicted values (scores),
f , for the unannotated proteins. An enrichment of enzymes
toward larger scores is evident.

5) Computation Time: Sharpeningdoes not require compu-
tation. The computation time of an original graph, the time for
solving the sparse linear system in Eq.(2), was nearly trivial
(less than 0.001 cpu second with MATLAB in a standard
1500 Mhz PC with 1 GByte of memory). It became faster
for a sharpenedgraph since the Laplacian matrix gets sparser.
Integration in Eq.(7) took avg.24.27(±10.86) CPU seconds
for original, while it was avg.4.66(±4.44) for sharpened
weights, and graph sparsity through sharpening benefitted the
computation time for integration.

6. CONCLUSION AND DISCUSSION

We applied to the protein function prediction problem two
recent developments in machine learning, sharpening [18] and
integration [17]. Graph sharpening is a formal yet intuitive
approach for disconnecting undesirable edges in a graph. The
result yields sparser graphs that contain less noise and, in
turn, reduce computational expense and improve prediction
without need for additional parameters. Using an established
optimization framework, graph integration can then be applied
with greater efficiency to pool information from multiple
sources. Both strategies, graph sharpening and graph integra-
tion, lend themselves well to the protein function prediction
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TABLE II

ROC SCORES COMPARISON FOR ALL THE COMBINATION OForiginal vs. sharpenedAND individual vs. integrated.

GO terms

ROC increase
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by sharpening

BLAST
original 0.71 0.70 0.41 0.56 0.60 0.68 0.70 0.60 0.65 0.59 0.74 0.59 0.68 0.60 0.83 0.09

sharpened 0.71 0.76 0.72 0.56 0.59 0.74 0.72 0.80 0.71 0.75 0.76 0.84 0.74 0.55 0.92± 0.10

CM
original 0.64 0.46 0.75 0.49 0.41 0.61 0.56 0.76 0.67 0.50 0.59 0.36 0.39 0.51 0.75 0.10

sharpened 0.64 0.73 0.76 0.52 0.56 0.63 0.68 0.75 0.74 0.56 0.65 0.59 0.56 0.66 0.93± 0.08

FAST
original 0.65 0.53 0.64 0.55 0.43 0.67 0.55 0.70 0.68 0.71 0.60 0.62 0.37 0.61 0.76 0.12

sharpened 0.65 0.78 0.73 0.63 0.62 0.72 0.69 0.81 0.64 0.82 0.67 0.82 0.84 0.73 0.88± 0.13

ETA
original 0.51 0.43 0.53 0.57 0.46 0.57 0.45 0.45 0.53 0.56 0.50 0.59 0.75 0.64 0.53 0.03

sharpened 0.50 0.49 0.55 0.58 0.46 0.60 0.48 0.45 0.57 0.58 0.52 0.59 0.74 0.67 0.56± 0.07

Integrated
original 0.68 0.49 0.75 0.51 0.41 0.64 0.56 0.76 0.73 0.63 0.64 0.49 0.39 0.58 0.79 0.16

sharpened 0.66 0.78 0.80 0.59 0.61 0.73 0.71 0.83 0.77 0.83 0.71 0.81 0.84 0.73 0.96± 0.12

ROC increase by integration

original
avg. 0.05 -0.04 0.17 -0.03 -0.06 0.01 0.00 0.13 0.10 0.04 0.03 -0.05 -0.16 -0.01 0.07 0.02
std. ± 0.09 ± 0.12 ± 0.14 ± 0.04 ± 0.09 ± 0.05 ± 0.10 ± 0.13 ± 0.07 ± 0.09 ± 0.10 ± 0.12 ± 0.19 ± 0.06 ± 0.13 ± 0.08

sharpened
avg. 0.03 0.09 0.11 0.01 0.05 0.06 0.06 0.13 0.11 0.15 0.05 0.10 0.12 0.08 0.13 0.09
std. ± 0.09 ± 0.14 ± 0.09 ± 0.05 ± 0.07 ± 0.07 ± 0.11 ± 0.17 ± 0.08 ± 0.13 ± 0.10 ± 0.14 ± 0.12 ± 0.08 ± 0.18 ± 0.04

ROC increase by sharpening and integration

avg. 0.03 0.25 0.22 0.05 0.14 0.10 0.14 0.20 0.14 0.24 0.10 0.27 0.29 0.13 0.24 0.17
std. ± 0.08 ± 0.10 ± 0.12 ± 0.03 ± 0.07 ± 0.05 ± 0.09 ± 0.11 ± 0.06 ± 0.08 ± 0.09 ± 0.10 ± 0.17 ± 0.05 ± 0.11 ± 0.08

Fig. 5. ROC score comparison (avg. of five cross-validation) between individual and the integrated graphs: Bars within a group correspond to BLAST, CM,
FAST, ETA, and the integrated graph in due order. For 13 out of 15 categories,integration with sharpeningsignificantly surpasses individual performance.



problem. Graph sharpening offers a general framework to
address the noise that is pervasive among functionally relevant
measures of protein similarity, while graph integration allows
overall predictions to take into account a wide variety of
complementary types of information on protein similarity
graphs, each one representing a different aspect or type of
functional information. While either strategy can be applied
alone, with sharpening having a greater effect than integration,
the best result was reached when sharpening and integration
are used together and thus yield a synergestic effect on
function prediction performance-at lesser computational cost.
This improvement is noteworthy for its size (0.17, or nearly
30% average increase in the area under the ROC curve) and in
view of the diversity of similarity scores that were integrated:
BLAST is used over sequences, CM and FAST are applied
over whole structures, and ETA is applied to a local structural
motif (and has only been optimized for enzymes, rather than
for the GO annotations used here).

This work motivates possible future studies. The method is
general and its full application for function prediction will still
require a continued refinement of individual methods, as well
as broadening the number of similarity measures whose graphs
are sharpened and then integrated together. Towards this goal,
we plan an Internet accessible software tool for sharpening
and integration to allow large scale function prediction using
these methods.
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