Session Detail Information

Add this session to your itinerary

Cluster : Contributed Session

Session Information : Friday Jun 13, 15:30 - 17:00

Title: Predictive Modeling-Methods

Chair: Makoto Abe, Professor, The University of Tokyo, Graduate School of Economics, 7-3-1 Hongo, Bunkyoku, Tokyo 113-0033, Japan, abe@e.u-tokyo.ac.jp

Abstract Details

Title: Semi-supervised Learning for Response Modeling

Presenting Author: Sungzoon Cho, Professor, Department of Industrial Engineering, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul, Korea, Republic of, zoon@snu.ac.kr

Co-Author: Seong-seob Hwang, Department of Industrial Engineering, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul, Korea, Republic of, hss9414@snu.ac.kr

Hyoung-joo Lee, Dr., Robotics Group, University of Oxford, Parks Road, Oxford, United Kingdom, imhjlee@gmail.com

Douglas MacLachlan, Professor & Chair, Foster School of Business Dept of Mktg & IB, University of Washington, Box 353200, Seattle WA 98195, United States of America, macl@u.washington.edu

Hyunjung Shin, Professor, Department of Industrial and Systems Engineering, Ajou University, San 5, Wonchon-dong, Youngtong-gu, Suwon, Korea, Republic of, shin@ajou.ac.kr

Abstract: Response modeling is concerned with targeting customers who are likely to purchase a promoted product or service based on customers' data. A well developed response model can increase profitability while reducing marketing costs. Modeling is usually carried out in a supervised learning framework where only those customer data labeled from the past campaign are used. A response model would predict labels of other customers who are not labeled. One disadvantage of this approach is that only a small percentage of customer data is labeled, thus available for modeling. A semi-supervised learning framework has recently been proposed to improve classification performance by exploiting unlabeled as well as labeled data in modeling based on an intuitive assumption: similar attributes lead to similar labels. In order to address this issue, we propose to use semi-supervised learning approaches for response modeling where a large number of unlabeled data are available. In particular, the multiple graph algorithm fits well to response modeling where customer data come from gualitatively different sources. Through experiments on the ColL Challenge 2000 dataset, it is shown that the algorithm results in a better model than conventional supervised algorithms in terms of a variety of performance measures. Semi-supervised learning is a viable option and merits further investigation.

Title: Contextual Determinants of the Predictive Accuracy of Binary Prediction Models

- **Presenting Author: Bas Donkers**, School of Economics, Erasmus University Rotterdam, PO Box 1738, Rotterdam -, Netherlands, donkers@few.eur.nl
 - Co-Author: Aur?ie Lemmens, Assistant Professor, School of Economics, Erasmus University Rotterdam, P.O. Box 1738, Rotterdam ZH, Netherlands, lemmens@few.eur.nl Peter C. Verhoef, Professor of Marketing, University of Groningen, P.O. Box 800, Groningen GR NL-9700 AV, Netherlands, P.C.Verhoef@rug.nl
 - Abstract: Previous research has investigated what models perform well in specific prediction tasks, including customer churn, CLV, etc. Recently, Lemmens et al. (2006) proposed bagging and in particular boosting as attractive alternatives to the frequently used logit model to predict customer defection in the US telecommunication industry. They advocate the advantages of these aggregation methods in presence of large datasets that contain a high number of predictors. However, further research is needed to investigate whether the high predictive power of these approaches can generalize to other settings. This paper therefore asks the question: What conditions affect the predictive performance of the various approaches to model binary choices? and What model should managers prefer under specific conditions? We compare four approaches, bagging, boosting, logit and latent class logit models. To investigate the determinants of predictive accuracy, we generate many datasets with varying characteristics, such as, among others, sample size, asymmetry of the distribution of 0/1, inclusion of irrelevant variables, nonlinearity of the relationship. The predictive performance is then investigated through a validation sample, using as performance criteria the hit-rate, the gini coefficient and the top-decile lift. We find that bagging does not live up to expectations, but that the other three approaches all have their merits. The non-parametric nature of bagging and boosting, relative to the logit models, proves beneficial for nonlinear relationships, while it hurts performance the more variables are included. We illustrate the findings from the simulation study using a number of real-life marketing datasets that differ in the dimensions identified as influential in the simulation study.

Title: Optimizing the Value of Incentives for New Customers

Presenting Author: Jeanette Heiligenthal, University of Frankfurt, Mertonstra? 17, Frankfurt 60054, Germany, heiligen@wiwi.uni-frankfurt.de

Co-Author: Bernd Skiera, Professor Dr., University of Frankfurt, Faculty of Business and Economics, Mertonst. 17-25, Frankfurt HE, Germany, skiera@wiwi.uni-frankfurt.de

Abstract: Firms often use very appealing incentives to attract new customers. Newspapers, for example, use reduced prices for the first year of subscription, sometimes even in combination with additional gifts. Thereby, firms need to determine the amount of incentives which they would like to provide. Very small incentives lead only to a limited number of (most likely) loyal customers, whereas high incentives lead to a high number of customers. Yet, those customers are likely to suffer from "adverse selection" because they tend to be rather non-loyal as they are primarily attracted by the incentive and not by the product itself. Hence, the value of the incentive has two effects: it determines the number of customers as well as the average customer lifetime value, which means that an optimal value for the incentive exists. Despite the importance of this problem, research on that problem is rare. Only Cao/Gruca (2005) deal with adverse selection in the credit approval process and present an approach for selecting customers for a cross-selling campaign based on response and approval likelihoods. Yet, they do not focus on the optimal value of possible incentives. Therefore, we address in our paper the problem of how to determine the optimal value of the incentive for new customers. We develop a model and use an empirical data-set from a major European Bank to illustrate the application of the model and to calculate a possible increase in longterm profitability. Based on those results we derive managerial implications for customer acquisition activities under adverse selection.

Title: Counting your Customers?One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model Presenting Author: Makoto Abe, Professor, The University of Tokyo, Graduate School of Economics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, abe@e.u-tokyo.ac.jp

Abstract: This research extends a Pareto/NBD model of customer-base analysis using a hierarchical Bayesian (HB) framework to suit today ऄs customized marketing. The proposed HB model presumes three tried and tested assumptions of Pareto/NBD models: (1) a Poisson purchase process, (2) a memoryless dropout process (i.e., constant hazard rate), and (3) heterogeneity across customers, while relaxing the independence assumption of the purchase and dropout rates and incorporating customer characteristics as covariates. The model also provides useful output for CRM, such as a customer-specific lifetime and survival rate, as by-products of the MCMC estimation. Using three different types of databases --- music CD for e-commerce, FSP data for a department store and a music CD chain, the HB model is compared against the benchmark Pareto/NBD model. The study demonstrates that recency-frequency data, in conjunction with customer behavior and characteristics, can provide important insights into direct marketing issues, such as the demographic profile of best customers and whether long-life customers spend more.

Semi-Supervised Learning for Response Modeling

Hyoung-joo Lee	University of Oxford
Hyunjung Shin	Ajou University
Seong-seob Hwang	Seoul National University
Sungzoon Cho*	Seoul National University
Douglas MacLachlan	University of Washington

INFORMS Marketing Science Conference

13 June 2008

Response Modeling

Objective

Identifying a subset of likely responders to an offer

In the subset, an accurate response model include

- Many responders (Profit opportunities)
- Few non-responders (Marketing cost)

Empirical approaches

Statistical models

Logistic regression, Discriminant analysis, etc.

Machine learning

• CBR, DT, K-NN, MLP, SVM, etc.

Supervised Learning

Supervised Learning for Response Modeling

Labels obtained from a preliminary campaign Training a model based on the labeled customer data Predicting the labels of the unlabeled (test) customer

Problems of Supervised Learning

Labeled data come only from actual campaigns Only a small part of data are labeled Unable to utilize the unlabeled data

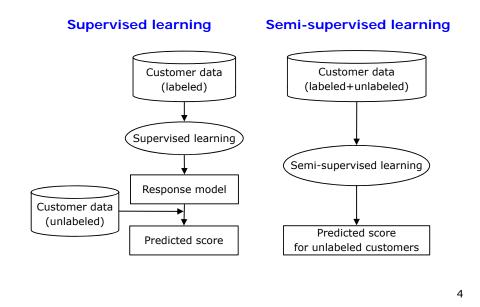
Semi-supervised Learning

Motivation

To make use of unlabeled data

"Cluster" or "Smoothness" assumption

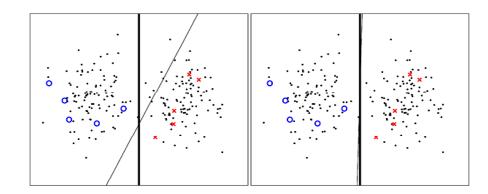
Data with similar attributes lead to similar labels


Useful when ...

- Labeled data are difficult to collect
- Unlabeled data are readily available or relatively easy to collect

Semi-supervised Learning for Response Modeling

Predicting the labels of the unlabeled (test) customer By considering the relationship between customers 1


Semi-supervised Learning

Semi-supervised Learning

Supervised learning

Semi-supervised learning

5

In This Presentation

Semi-supervised Learning for Response Modeling

To exploit the information of unlabeled customer data

Graph-based semi-supervised learning

- Single graph algorithm
- Multiple graph algorithm

Case Study: Col L2000 Challenge Data Set

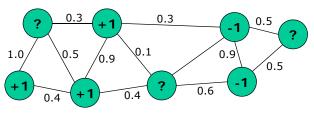
Supervised learning algorithms

- Logistic regression
- K-nearest neighbors (K-NN)
- Support vector machine (SVM)

Semi-supervised learning algorithms

- Single graph algorithm
- Multiple graph algorithm

Graph-based Learning

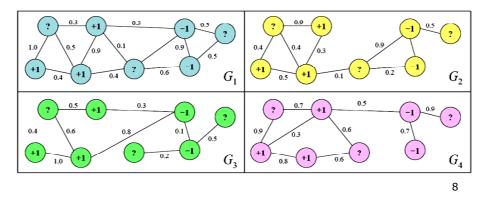

Graph Representation

Each customer: Each vertex

A similarity between customers: A weight of an edge Labels: +1 / -1 / ? (unlabeled)

Vector → Graph Representation

RBF kernel for K-NN customers $w_{ij} = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$ Similarity matrix "W"



Graph-based Learning

Multiple Graph Learning

Multiple sources of data \rightarrow Multiple graphs Ex) Demographic, RFM, customer care, billing, etc.

Learning by integrating multiple graphs

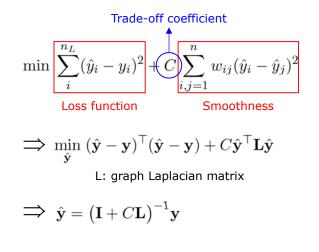
Graph-based Learning

Outline of Graph-based Learning

Graph representation

- Transforming vector data into the graph representation
- Labeling vertices (+1 / -1 / ?)

Predicting the labels of unlabeled vertices


- $\hfill \ensuremath{\,\bullet\)}$ By exploiting the graph structure of both labeled and unlabeled nodes
- Convex optimization

Single and multiple graph algorithm

- Single graph algorithm
- Multiple graph algorithm (multiple graphs available)

9

Single Graph Algorithm

Multiple Graph Algorithm

Primal
$$\min_{\hat{\mathbf{y}},\gamma} (\hat{\mathbf{y}} - \mathbf{y})^{\top} (\hat{\mathbf{y}} - \mathbf{y}) + C\gamma,$$

subject to $\hat{\mathbf{y}}^{\top} \mathbf{L}_m \hat{\mathbf{y}} \leq \gamma, \quad m = 1, \dots, M$
Dual $\min_{\boldsymbol{\alpha}} d(\boldsymbol{\alpha}) \equiv \mathbf{y}^{\top} (\mathbf{I} + \sum_{m=1}^{M} \alpha_m \mathbf{L}_m)^{-1} \mathbf{y}$
subject to $\sum_{m=1}^{M} \alpha_m = C$
Solution $\hat{\mathbf{y}} = (\mathbf{I} + \sum_{m=1}^{M} \alpha_m \mathbf{L}_m)^{-1} \mathbf{y}$
Dual solution:
a weight of an individual graph

Case Study: Col L2000 Challenge

Data Set

An insurance company case Response modeling for caravan insurance policies Training / Test: 5,822 / 4,000 86 variables: demographic, frequency, monetary

Preprocessing

Binary encoding for categorical variables

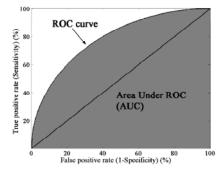
Graph representation

- Single graph based on all variables
- 3 graphs based on each source: demographic, frequency, monetary

30 random splits of training/test sets

12

Case Study: ColL2000 Challenge


Performance Evaluation Criteria

The number of actual respondents among top 800 prospects

Lift chart

ROC chart

Area under ROC

Case Study: Col L2000 Challenge

Response Models

Supervised learning (parameters)

- Logistic regression (none)
- K-NN (the number of neighbors, K)
- SVM (the kernel width, σ & the trade-off coefficient, $_{\mathcal{C}}$)

Semi-supervised learning (parameters)

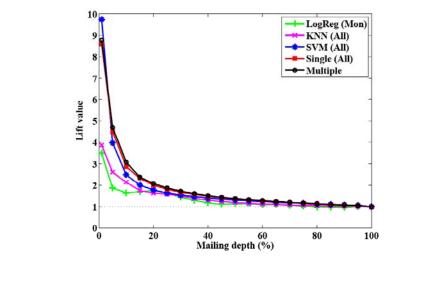
- Single graph algorithm (K, σ , C)
- Multiple graph algorithm (K, σ , C)

Parameter selection

The number of actual respondents among top 800 prospects

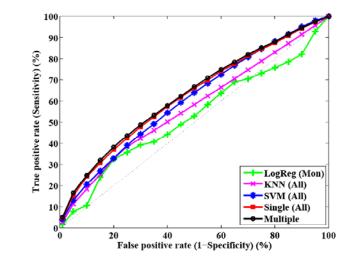
13

Case Study: ColL2000 Challenge


Top 800 Prospects

Data source	All	Demo	Freq	Mon	Ensemble
LogReg	52.80	66.43	46.70	75.53	65.37
K-NN	75.00	41.65	61.49	47.71	63.07
SVM	76.50 ³	61.37	44.63	65.67	69.20
Single	84.97 <mark>2</mark>	73.57	52.17	59.43	-
Multiple	-	-	-	-	88.27 ¹

The best with a=0.10


Case Study: CoIL2000 Challenge

Lift Chart

Case Study: Col L2000 Challenge

ROC Chart

Case Study: Col L2000 Challenge

Area under ROC

Data source	All	Demo	Freq	Mon	Ensemble
LogReg	49.08	56.90	52.67	54.63	53.76
K-NN	57.00	47.94	49.63	53.17	53.52
SVM	60.61 ³	57.75	57.23	50.67	59.12
Single	62.29 <mark>2</mark>	58.34	48.98	33.86	-
Multiple	-	-	-	-	63.02 ¹

The best with a=0.10

Conclusion

Semi-supervised Learning for Response Modeling

To exploit information of the unlabeled customers

Graph-based learning

- Graph representation of data
- Convex optimization
- Single graph algorithm
- Multiple graph algorithm to deal with various sources of information

Case study on CoIL Challenge 2000 data set

- 3 sources \rightarrow 3 graphs
- Comparison with supervised learning algorithm
- Semi-supervised learning outperform supervised learning

Semi-supervised learning should be considered as a viable option for response modeling where a large number of unlabeled data are available

16

17

Future Research Directions

Computational Complexity

Missing Not At Random (MNAR)

Voluntary Response

Other Semi-supervised Learning Algorithms

Class Imbalance

Feature Selection

20

The Institute for Operations Research and the Management THE UNIVERSITY OF BRITISH COLUMBIA | Sauder School of Business Sciences Doctoral Consortium Sauder School of Business About Vancouver Map & Contact Home Accommodations Past Conference Hosts Conference Overview ting Science Conference Mai Conference Registration Call for Papers Abstract Submission **Conference** Overview Schedule at-a-The Sauder School of Business of The University of British Columbia will host the 2008 INFORMS Marketing glance Science Conference to be held from Thursday, June 12 to Saturday, June 14, 2008 at the Sheraton Wall Centre Conference Program Hotel in Vancouver, British Columbia, Canada. This event brings academics, practitioners and policymakers from

Conference Venue

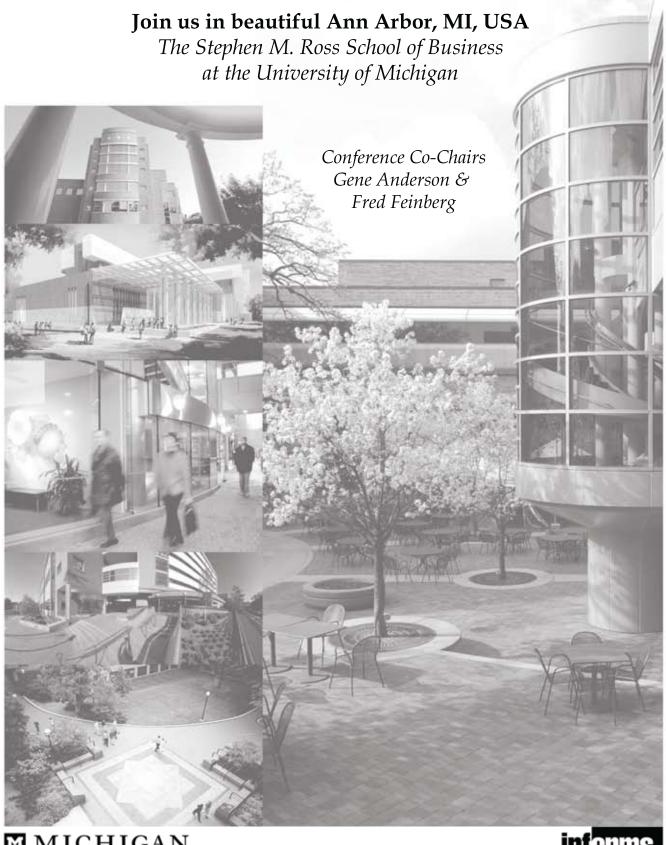
Sponsors

around the world together in one of the world's most beautiful cities to present, hear, and discuss new research in a broad range of marketing science topics.

Conference Organizing Committee is composed of the Marketing faculty of the Sauder School of Business:

Chuck Weinberg (Conference Chair) Darren Dahl (co-chair) Dan Putler (co-chair) Jack Chen Srabana Dasgupta

Tirtha Dhar Dale Griffin Joey Hoegg Tim Silk Juliet Zhu


		s	ATI	URDAY	-		FRIDAY					THURSDAY					Tra	Ы	2									
SD 3:30-5PM	3-3:30PM	SC 1:30-3PM	12-1:30PM	SB 10:30-12PM	10-10:30AM	SA 8:30-10AM	7:30-8:30AM	7AM-4PM	7-10PM	FD 3:30-5PM		3-3:30PM	FC 1:30-3PM	12-1:30PM	FB 10:30-12PM	10-10:30AM		FA 8:30-10AM	7:30-8:30AM	6:30-8PM	тс 4:45-6:15РМ	тв 3-4:30РМ	2:30-3PM	TA 1-2:30PM	6:30PM		Hoom J	•
Social Networks & Marketing IV	•	Social Networks & Marketing III		Social Networks & Marketing II		Social Networks & Marketing I				Engines & Marketing Science	Search		Adverti- sing by "Words"		Customi- zation	Online	-	Search Engines & Marketing			Dynamic Structural Models	Static & Dynamic Equilib- rium Models		Empirical Analysis of Online Auctions		-	Junior D	
Gift Giving & Fashion		Marketing Engineering – Integrating Data Mining Tools		Words Matter		Price Rigidity				Markeung Channels	Frontiers in		Sales Force Design & Compensa- tion Strateov		Components in Choice Experiments	Variance		Service Marketing			Financial Market's Reaction to Marketing	Marketing & Financial Performance I		Expanding Frontiers of Diffusion Research		2	Junior C	1
No Session		Marketing Science Beyond Business		Marketing & Public Policy: Public Interest		Social & Cause Marketing				Preference Measure- ments	Alternative		Managerial Decision Making		Session on Marketing & Health	Special		Marketing Meets Design			Private Labels	Bidding Behavior in B2B & B2C Online Auctions		Loyalty Programs		ن ن	(Pavil D-Fri)	7
Service Evalua- tion		Service Organiza- tion Manage- ment		Models of Sales Promotion		Consum- er Response to Promos.				ties & Self- Selection	Network		Social Networks & Market Efficiencv		Effects & Social Influence	Network		Influences on Purchase			Social Influence & Self- Construal in Consu- mption	Word-of- Mouth in Online Environ- ments		New Approach. Word-of- Mouth		4	Alberni	2
The Hole of Network Externali- ties in Diffusion		New Product Develop. – Product Design		Commer- cializing Innovations & Launch. New Prod.		New Product Design & the Design Process				tional Dynamics & Innovation	Organiza-		Emerging Issues in Software & Tech. Mkts		Product Forecasting	New	Intro.	Managing New Product			New Product Diffusion - Cross Country Studies	New Product Diffusion – Applica- tions		Issues in New Product Adoption		σ	(Pavil C-Fri)	20
Methodol- ogy: Data Manage- ment & Collection		Statistical Method- ology		Bayesian Method- ology		Structural Equation Modeling				магкетіng	Health		Pharmaceu- tical Marketing		Entertain- ment Media Marketing		Marketing	Word-of- Mouth in			Movie Marketing	Entertain- ment Demand		Modeling Movie Box- Office		σ	Grand B (Pavil B-Fri)	008 INFOF
Segmenta- tion Research		Market Segmenta- tion		Conjoint Analysis Methods		Structural Econometric Models of Consumer Choice				Models	Multiattribute		Choice - Applications		Marketing Mix Response	Choice -		Choice – Statistical Methods			Choice – Methods & Data	Applied Choice Models		Brand Choice & Market Structure		1	Grand A (Pavil A-Fri)	2008 INFORMS Marketing Science Conference
Models of Consumer Learning	BREAK	Behavioral Choice Models	LUNCH	Assessing Risk & Ambiguity Aversion	BREAK	Consumer Perception: Packaging, Stimuli & Haptics	BREAKFAST	REGISTRATION		Culture & Ethnicity in Consumer Behavior	Importance	RRFAK	Craving & Justification in Hedonic Consump.	LUNCH	Consumer Choice Process	Influences		Consumer Decision Making	BREAKFAST	WELCOME RECEPTION	Mood, Brand Familiarity & Decision Frames	Self- Prediction, Control & Need Satisfaction	BBEAK	Reference Points, Timing & Concession	REGISTRATION	œ	Port Hardy	ting Scier
Factors Influencing Product Line Innovative		Product Line Manage- ment	-	Product Manage- ment		Customer Lifetime Value	AST	TION	NER	Methods	· ·		Predictive Modeling – Applica- tions	-	Lifetime & Wallet- share	Customer	Modeling	Dynamic Effects in Predictive	AST	CEPTION	CRM- System Implemen- tation	CRM- Customiza- tion & Customer Portfolio		Models of Customer Churn	TION	9		ice Confe
Altering Channel Relation- ships		Channel Structure		Channels & Customer Choice		Channel Manage- ment				Series Market Analysis	Time		Pricing Competi- tion		Alliances	Stratenic		Channel Competi- tion			Dynamic Aspects of Competi- tion	Issues in Competi- tion Modeling	0011100111	Modeling Dynamic Market Competit		10	JUNIOF A	rence
Marketing Metrics		Issues in B2B Marketing		Customer Relation. in a Multi- channel Environ.		Blog- Research				er Choice & Learning	eComm -		eComm – Online Info Search		The Long Tail Effect	eComm -	Systems	eComm – Recomm- endation			eComm - Multi- Channel	Sales Manage- ment II		Sales Manage- ment I	-	11	McNeill	D 22
B2B Customer Relation- ships	}	Customer & Employee Relation- ships in Services		Issues in Customer Satisfaction Research		Understand- ing & Improving Customer Satisfaction				Price Discrimina- tion	Price		Price Perception		- G	Pricing	Perception	Factors Influencing Price			Bundling & Pricing	Willingness to Pay Measure- ment	000000	Price Eval., WTP & Pricing Options		12	Parksville	Datavilla
Meet th		Brand Manage- ment		Brand Equity & Corporate Citizenship		Brand Equity				Identity, Persona- lity & Extensions	Brand		Brand Measure. & Manage- ment		Infl. Brand Equity & Image	Factors		Branding Issues			Branding	Brand Strategy		Issues in Branding		13	Urca	050
ne Editors: Thursday TA17- 1:00- 2:30PM TB17- 3:00- 4:30PM		Consumer Response to Adverti- sing Comm.		Adverti- sing Pricing		Measuring Adverti- sing Effective- ness				sing & Market Competi- tion	Adverti-		Adverti- sing & Sponsor- ship			New		Adverti- sing Issues			Advertis- ing Strategy	Issues in Advertis- ing	5	Theoret. Models of Advertis. & Promo.		14	Finback	Einhank
Meet the Editors: Thursday, Pavilion TA17- 1:00- 2:30PM TB17- 3:00- 4:30PM										Behavior	Strategy &		Financial Markets & Marketing		Orientation, Cus. Loyal. & Competit.	Market	Marketing	Org. Theory Issues in			Marketing Strategy & Firm Performan.	Best Practices Effective Global Marketing	1000000	Internatio- nal Marketing Issues		15	Granville	Cronvilla
vilion D										Store Environ- ment	Retail		Retail Store Choice &		Issues in Retailing	location	ment	Retail Category Manage-			Retail Manage- ment	Multi- Product Marketing		Direct Marketing & Targeting		16	Gallano	Paliano

30th Annual INFORMS Marketing Science Conference | June 12 - 14, 2008 | Vancouver, Canada

INFORMS MARKETING SCIENCE CONFERENCE June 4 - 6, 2009

MICHIGAN ROSS SCHOOL OF BUSINESS **iforms**

INFORMS // Marketing Science // Conference 2010 // Cologne // Germany // June 16-19 //

// The Faculty of Management, Economics and Social Sciences at the University of Cologne is proud to host the 2010 INFORMS Society for Marketing Science Conference.

// Join us in the heart of Germany in Cologne from June 16-19 2010.

// Conference website www.marketingscience2010.uni-koeln.de

// Conference Chair: Werner Reinartz// Co-chairs: Karen Gedenk, Franziska Voelckner

University of Cologne

2008 INFORMS Marketing Science Conference

	Friday, June 13 th , 2008	3:30-5:00PM (FD)	
FD09 – Junior Ballroom B	FD10 – Junior Ballroom A	FD11 – Port McNeill	FD12 – Parksville
Predictive Modeling-Methods	Time Series Market Analysis	eCommerce-Consumer Choice and Learning	Price Promotions and Price Discrimination
Chair: Makoto Abe	Chair: Hernan Bruno	Chair: Wenzel Drechsler	<u>Chair:</u> Amit Pazgal
Semi-supervised Learning for Response Modeling Sungzoon Cho, Hyunjung Shin, Seong-seob Hwang, Douglas MacLachlan, Hyoung-joo Lee Contextual Determinants of the Predictive Accuracy of Binary Prediction Models Bas Donkers, Aurélie Lemmens, Peter C. Verhoef Optimizing the Value of Incentives for New Customers Jeanette Heiligenthal, Bernd Skiera Counting your Customers' One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model Makoto Abe	Structural Dynamics of Competition and its Effects on Long-term Customer Profitability Jens Keller, Sven Reinecke Dynamic Customer Management on Duration Time Structure Geonha Kim, Dae Ryun Chang The Impact of Pricing on Customer Profitability: Evidence From an Industrial Market Hernan Bruno, Bruce Hardie, Shantanu Dutta	The Effect of Internet Adoption on Catalog Customers' Buying Behavior Junzhao Ma, Eric Anderson, Karsten Hansen The Impact of Internet Adoption on Customer Purchasing Behavior in Direct Marketing Xiaojing Dong, Kirthi Kalyanam, Pradeep Chintagunta Does Opening a Physical Store Change Customer Behavior? Yantao Wang, Eric Anderson, Karsten Hansen The Impact of Visualizing a Product's Price History at Price Comparison Sites on Consumer Decisions Wenzel Drechsler, Martin Natter	Market Segmentation for Pricing Strategy Yoshiyuki Okuse Endogenous vs. Exogenous Wholesale Prices During Instant Rebates Simon Sigue Endogenous and Exogenous Determinants of Inter-Category Price Sensitivity- A Spatial Approach Joy Joseph, Aman Nanda Innovative Pricing Strategies Under Strategic Consumer Behavior Amit Pazgal, Yossi Aviv
FD13 – Orca	FD14 – Finback	FD15 – Granville	FD16 – Galiano
Questions on Brand Identity, Personality, and Extension	Advertising and Market Competition	Strategy and Consumer Behavior	Retail Store Environment
Chair: Robert Kreuzbauer The Interchangeability of Brand Extensions Joseph Chang, Bob Wu Designing Coolness: Brand Building in the Global Fashion Industry Rajesh Chandy, Om Narasimhan, Paola Cillo, Jaideep Prabhu Brand Personality: Transference and Preference Sharon Hodge, Kathryn Olinger Basic Social Motives of Brand Identity Signaling Robert Kreuzbauer, Chi-yue Chiu, Vivian Vignoles	Chair: Nawel Amrouche Advertising and Market Structure: A Digital Video Recorder Field Experiment <i>Carl Mela, Bart Bronnenberg,</i> <i>Jean Pierre Dube</i> Copycat Advertising and Strategic Theme Release <i>Chun (Martin) Qiu, Demetrios</i> <i>Vakratsas</i> Search Advertising <i>Sridhar Moorthy, Avi Goldfarb</i> Feedback Stackelberg Equilibrium Strategies When the Private Labels Competes with the National Brand <i>Nawel Amrouche, Guiomar</i> <i>Martín-Herrán, Georges Zaccour</i>	Chair: Wilfred Amaldoss Unbundling Music: Can Selling Individual Songs Reduce Competitive Intensity Among Music Producers? Sherif Nasser, Nicholas Economides Turf Wars: Brand Extension in Markets with Preference Based Segmentation Yogesh V. Joshi, David Reibstein, John Zhang Software Piracy in the Presence of Open Source Software Rajiv Sinha, T.S. Raghu, Fernando Machado Strategic Implications of Reference Groups: An Experimental Investigation Wilfred Amaldoss, Sanjay Jain	Chair: Julien Schmitt Shelf Layout Effects for Sustainable Products <i>Erjen van Nierop, Erica van</i> <i>Herpen, Laurens Sloot</i> Extreme Makeover: Financial and Perceptual Effects of a Remodeled Servicescape Over Time <i>Bram Foubert, Elisabeth</i> <i>Brüggen, Dwayne Gremler</i> Investigation of the Impact of Store Layout on Category Sales and Store Profitability <i>Yu Ma, Minakshi Trivedi, Dinesh</i> <i>Gauri</i> Associations Between Purchases and In-store Behavior: An Extension of the Market Basket Analysis <i>Julien Schmitt, Ganael Bascoul</i>