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Abstract

Thanks to the recent collaborative initiative against cancer, heterogeneous types of genomic data from
cancer patient become available. The aim of the present study is to compare different types of
genomic data for Glioblastoma multiforme (GBM) recurrence prediction. The four types of genomic
data, Copy Number Variation (CNV), methylation, miRNA, and gene expression data, are employed
and tested on 159 GBM patients using the state-of-the-art machine learning algorithm, semi-
supervised learning.
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Abstract

Thanks to the recent collaborative initiative against cancer, heterogeneous
types of genomic data from cancer patient become available. The aim of the
present study is to compare different types of genomic data for classification
of clinical outcomes in Glioblastoma multiforme (GBM) . The four types of
genomic data, Copy Number Variation (CNV), methylation, miRNA, and
gene expression data, are employed and tested on 159 GBM patients using
the state-of-the-art machine learning algorithm, semi-supervised learning.
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Introduction
Glioblastoma Multiforme (GBM)
% Most common and aggressive primary brain tumor in adults
= Median survival of GBM: about one year

= One of the hallmarks of GBM is its inherent tendency to recur
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Introduction

Classification in Cancer Research

“» Why do we need to classify cancers?
= The general way of treating cancer is to:

» Categorize the cancers in different classes

« Use specific treatment for each of the classes

“ Traditional ways to classify cancers
= Morphological appearance
Not accurate!

= Enzyme-based histochemical analyses
= Immunophenotyping
= Cytogenetic analysis

Complicated & need highly specialized laboratories
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Introduction

Classification in Cancer Research (cont’d)

“ Microarray-based cancer diagnosis

= Cancer is caused by changes in the genes that control normal cell growth and
death

= Molecular diagnostics offer the promise of precise, objective, and systematic
cancer classification

= Molecular-based classification of cancer subtypes or clinical outcomes using
microarray
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Microarray

Introduction

< A multiplex technology used in molecular biology and in medicine

= Microarray techniques will lead to a more complete understanding of the molecular
variations among tumors or clinical outcomes, hence to a more reliable classification
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Introduction

The Complex Mechanism of Biological Organization

There are multiple levels in biological system !
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Introduction
The Complex Mechanism of Biological Organization
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There are many exceptional variations between levels such as CNVs, DNA methylation,
alternative splicing, miRNA regulation, post translational modification, etc
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Introduction
TCGA: Connecting multiple sources,
experiments, and data types

Three forms of cancer Multiple data types
Clinical Data
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Introduction

Motivation

% Cancer can be dysregulated through multiple mechanisms
= Modifications to the DNA and the histones
= Changes in the DNA structure and copy humber
= Mutations in the coding and non-coding sequences

“ These changes can lead to alterations in
= Transcription
= Translation
= Post-translational modification
= Ultimately gene and protein function
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Introduction

Motivation (cont’d)

“ With abundance in genomic/clinical data in cancer research
The question that bioinformaticians often encounter is which genomic data is
more informative?

% To wet-lab analysts
It concerns data generation that requires highly cost/time-demanding work and

experienced facilities

% To dry-lab analysts

It concerns selection of appropriate data source for more accurate prediction,
avoiding unnecessary waste of computational resource

Dokyoon Kim (INFORMS 2010)
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«» Clinical outcomes

= Initial GBM vs. recurrent GBM
= Short-term survival vs. long-term survival

Purpose of the Study

+ To provide a preliminary insight on the question
This study compares different types of genomic data in GBM using the state-of-
the-art machine learning algorithm, Semi-Supervised Learning (SSL)

Introduction

Genome Epigenome Transcriptome
COPY NUMBER DNA GENE miRNA
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Phenome

Data
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TCGA Data

Molecular Analytes

Clinical Data
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Download Multi-level Genomic Data

®,
o

Available raw and normalized different types of genomic data
were retrieved from the TCGA data portal

>

Tissue: GBM

o
*

o,
*

% Size: about 230 GBs

3

» Databasing each level of data for further analysis

D
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Data Description

Agilent Human 235,829
Genome CGH
Microarray 244A
Methylation lllumina DNA 235 1,498

Methylation OMA003
Cancer Panel 1

Gene Expression  Affymetrix HT Human 262 12,043
Genome U133 Array
Plate Set

miRNA Agilent 8x15K Human 266 534
miRNA-specific
microarray

* Samples with tumor type = ‘solid tumor’
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0.s

Data: Input

CNA Methylation Expression miRNA
F: 235,829 F: 1,498 F: 12,043 F: 534
S:|278 S:|235 S:|262 S: 66

S: Sample, F: Feature, O.S: Overlap Samples

«» Select overlap samples among multi-level of genomic datasets as an
input
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Data: Output Variable

Disease Recurrence (yes vs. no) 159 (39 / 120)

Survival status (short-term vs. long-term) 82 (54 / 28)

< Define classes

= Disease recurrence
+ Initial GBM: Procedure_Type = ‘Surgical Resection’ & Pretreatment_History = ‘No’
» Recurrent GBM: Procedure_Type = ‘Secondary Surgery for tumor recurrence’

= Survival status
» Short-term survival: Survival < 9 months
* Long-term survival: Survival > 24 months
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Methods
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Data preprocessing: Missing Value Imputation

% Missing values were estimated using K-nearest neighbors with K= 15
(Troyanskaya et al., 2001)

M .,N

= AssumeaMxNmatix G =(g,;); 5

= Missing entry G;, as the weighted average of
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Data preprocessing: Feature Selection

% Identify differential expressed genes from two conditions or phenotypes

= t-test W =X 1 & i
===, j=lu,p Sh=—">(X;-Xi) k=12
: 2 2 J Eo ij
i Ve i
non
signal  _ difference between group means
noise variability of groups

m _

control treatment
dgroup dgroup
mean mean
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Graph-based Semi-Supervised Learning (SSL)

Association of two patient
(similarities)

Patient

Initial GBM

Recurrent GBM

Unknown patient

“ The goal of SSL is to classify unknown patient into the right class
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Graph-based Semi-Supervised Learning (SSL)

+“ Objective function

Ign=(f—yf(f—yﬂﬂfﬁf

Loss Smoothness

= Loss condition: In labeled nodes, final output should be closed to the
given label

= Smoothness condition: final output should not be too different from the
adjacent node’s output

= L is called the graph Laplacian matrix where

i

«» Solution

f=U+ul)"y
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Input for SSL: Weight Matrix (W)

« Exp-weighted K-NN graphs

d i 2
W, =exp(- (;2]) )

= Nodes j, j are connected by an edge if i is in j's K-nearest-neighborhood or vice
versa

= d: Euclidean distance
= Hyperparameter a controls the decay rate
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Model Parameter Selection

+« Parameters should be selected by user when learning with SSL
= K:KNN

- JL:SSL

+» Combination of parameters

= K={3,4,56,7,8,09, 10, 20, 30}

= M = {0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 1.0, 10.0, 100.0, 1000.0}
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Experiment: Measurement (AUC)

% AUC (Area under the ROC curve)

+» 5-fold cross validation

Example ROC Curve
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Model Parameter Selection
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Gene Expression
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0.005

miRNA

1.000
0.100
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0.010
0.005
0.001
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12,043
545
209

17
8

58
29

Experiment Results: Recurrence

0.4095
0.4976
0.6583
0.6667
0.6369

0.5083
0.5738
0.5988
0.7131
0.7107
0.7226

0.3992 +0.0086
0.4842 +0.0097
0.5334 £0.0405
0.6098 +0.0281
0.5720 +0.0327

0.4768 £ 0.0205
0.5120 +0.0289
0.4711 £0.0345
0.5879 +£0.0414
0.5953 +0.0459
0.5900 0.0427
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10
15
30

15
30
30

9
30

0.010
0.010
1,000
0.550
0.650

1,000
0.600
1,000
0.900
100.0
1.000

Experiment Results: Recurrence

Methylation
1.000 1,498 0.6071 0.4220 +0.0378 1,000
0.100 131 0.6774 0.5722 £0.0437 30 0.400
0.050 68 0.6226 0.5454 +0.0381 15 0.350
0.010 16 0.5536 0.4393 £0.0405 30 0.050
0.005 10 0.5631 0.4888 +0.0310 30 0.050
1.000 235,829 0.4345 0.4231 £0.0046 0.001
0.100 16,045 0.4631 0.4376 +0.0099 3 0.001
0.050 5,824 0.6119 0.5845 +0.0244 7 0.001
0.010 495 0.7488 0.7051 £0.0197 10 1,000
0.005 192 0.7500 0.6895 +0.0396 3 0.900

0.001 23 0.8131 0.7498 +0.0241 30 0.300
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Best AUC Comparison

Recurrence CNA 0.8131
Methylation 0.6774

Gene Expression 0.6667

miRNA 0.7226

Survival CNA 0.8160
Slatis Methylation 0.7480
Gene Expression 0.8560

miRNA 0.7480

“» Recurrence: CNA data showed the best performance (AUC: 0.8131)

++ Survival status: Gene expression data showed the best performance (AUC: 0.8560)
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AUC Changes after Feature Selection

Gene Expression CNA
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+“ Increasing tendency of AUC through feature selection
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Conclusion
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Biological Implication

+» Disease recurrence in GBM

= CNA data showed the best performance among multi-level of genomic data
sets

= These findings suggest that tumor progression from initial to recurrent
tumor has high probability to be associated with an increase of genetic
changes

= Therefore, recurrences in GBM are more advanced than initial GBM
= An increasing amount of DNA copy number alterations is a dominant

feature between initial and recurrent GBM

«» Survival status in GBM

= Even though CNA data showed good performance, gene expression data
was the most dominant feature in survival status

= These findings suggest that functional level is relatively better than
structural level to distinguish between short-term and long-term survival in
GBM
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Biological Implication '

“ Why did CNA data show the best performance in disease
recurrence in GBM?

< Why did gene expression show the best performance in
survival status in GBM?

% We could get these meaningful questions from our
approach for further study
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Importance of Feature Selection '

+“ Molecular biology data from high-throughput technologies
= High-dimension
= Noisy
= Missing value

= These factors listed above affect performance
= Importance of feature selection in bioinformatics is getting increased

% AUCs were increased dramatically through feature selection
using simple t-test
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Conclusion '

+« Classification of clinical outcomes in GBM was performed as a base
task in order to provide a preliminary insight on the question:

= Which genomic data is more informative when multiple genomic dataset are
available

% Specific genomic data with high performance could be solely used in
classification tasks where other genomic dataset are unavailable

= Due to the high cost associated with the experimental procedure and sample
availability

“ However, data integration with multi-level of genomic data is needed
to better explain phenotype

= Different genomic data contain partly independent and partly complementary
pieces of information
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Multi-level Genomic Data Integration

«» Multiple graphs from heterogeneous genomic data can be
combined

K
miny" (I+Y a,L)"y o
@ k

k=1

K
f=d+Y L)'y
k=1

Shin et al., 2007
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Multi-level Genomic Data Integration

Genome Epigenome Transcriptome
CNA Methylation miRNA
L{o) = L )
L;of G, Liof G L:of Gy Lyof Gy
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Phenome

Integration of Multi-level Genomic Data:
Recurrence
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Integration of Multi-level Genomic Data:
Survival Status
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The Second phase of TCGA Project

NCI Cancer Bulletin

A Trusted Source for Cancer Research News
I

October 6, 2009 - Volume 6 | Number 19 About the Bulletin Archive/Search

Issue Home =

: A
Featured Article r

Featured Article: The Cancer
Genome Atlas Project to Map 20 3 1

Tumor Types -
Hormone Therapy for Prostate .
Cancer MavPoseHesrtRsks | The Cancer Genome Atlas Project to Map 20 Tumor Types I
Breast Cancer Trial Suspends |
Becruitment During a visit to the NIH campus last week, President Barack
High-dose Daunorubicin Benefits 0Obama announced that NIH will spend $275 million over the
Younger Adults with Leukemia next 2 years to catalogue the genetic changes driving more

Many Survivors of Chidhood Ran 2obeas,oicance:

Cancers Have Healthy Babies

Investigational Drug Effective The grant, which includes $175 million in Recovery Act funds,
Against Metastatic Melanoma in will support the second phase of The Cancer Genome Atlas
J—Eﬂr Phase Trial (TCGA) project This collaborative effort led by NCl and the
National Human Genome Research Institute (NHGRI) aims to
discover the molecular alterations that occur in major types
and subtypes of cancer.

Invasivene: east Cancer

Cells Lin

Leaders of the project said thatthe TCGA pilot study,
launched in 2008, has demonstrated the feasibility of using
integrated genomic strategies to characterize the molecular
alterations in cancer. The first three cancers profiled were

Experts Tackle the Challenoe of brain, lung, and ovarian.

Director's Update: Global Cancer
Control. An Essential Duty
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