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Abstract 

 

Thanks to the recent collaborative initiative against cancer, heterogeneous types of genomic data from 

cancer patient become available. The aim of the present study is to compare different types of 

genomic data for Glioblastoma multiforme (GBM) recurrence prediction. The four types of genomic 

data, Copy Number Variation (CNV), methylation, miRNA, and gene expression data, are employed 

and tested on 159 GBM patients using the state-of-the-art machine learning algorithm, semi-

supervised learning.  
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Abstract

Thanks to the recent collaborative initiative against cancer, heterogeneous 
types of genomic data from cancer patient become available. The aim of the 
present study is to compare different types of genomic data for classification 
of clinical outcomes in Glioblastoma multiforme (GBM) . The four types of 
genomic data, Copy Number Variation (CNV), methylation, miRNA, and 
gene expression data, are employed and tested on 159 GBM patients using 
the state-of-the-art machine learning algorithm, semi-supervised learning.
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Glioblastoma Multiforme (GBM)

� Most common and aggressive primary brain tumor in adults 

� Median survival of GBM:  about one year

� One of the hallmarks of GBM is its inherent tendency to recur

Introduction
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Classification in Cancer Research

� Why do we need to classify cancers? 
� The general way of treating cancer is to:

• Categorize the cancers in different classes

• Use specific treatment for each of the classes

� Traditional ways to classify cancers

Introduction

� Traditional ways to classify cancers
� Morphological appearance

Not accurate!

� Enzyme-based histochemical analyses

� Immunophenotyping

� Cytogenetic analysis

Complicated & need highly specialized laboratories
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Classification in Cancer Research (cont’d)

� Microarray-based cancer diagnosis

� Cancer is caused by changes in the genes that control normal cell growth and 
death

� Molecular diagnostics offer the promise of precise, objective, and systematic 
cancer classification

Introduction

� Molecular-based classification of cancer subtypes or clinical outcomes using 
microarray
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Microarray

Introduction

� A multiplex technology used in molecular biology and in medicine

� Microarray techniques will lead to a more complete understanding of the molecular               
variations among tumors or clinical outcomes, hence to a more reliable classification
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The Complex Mechanism of Biological Organization

Introduction

There are multiple levels in biological system !
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The Complex Mechanism of Biological Organization

Introduction
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There are many exceptional variations between levels such as CNVs, DNA methylation, 
alternative splicing, miRNA regulation, post translational modification, etc

Dokyoon Kim (INFORMS 2010)

TCGA: Connecting multiple sources, 

experiments, and data types

Clinical Data

Introduction

Multi-layers of genomic Data
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Motivation

� Cancer can be dysregulated through multiple mechanisms

� Modifications to the DNA and the histones

� Changes in the DNA structure and copy number

� Mutations in the coding and non-coding sequences

� These changes can lead to alterations in 

Introduction

� These changes can lead to alterations in 

� Transcription 

� Translation

� Post-translational modification

� Ultimately gene and protein function
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Motivation (cont’d)

� With abundance in genomic/clinical data in cancer research

� The question that bioinformaticians often encounter is which genomic data is 

more informative?

� To wet-lab analysts

� It concerns data generation that requires highly cost/time-demanding work and 

Introduction

� It concerns data generation that requires highly cost/time-demanding work and 

experienced facilities

� To dry-lab analysts 

� It concerns selection of appropriate data source for more accurate prediction, 

avoiding unnecessary waste of computational resource
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Purpose of the Study
Introduction

� To provide a preliminary insight on the question

� This study compares different types of genomic data in GBM using the state-of-

the-art machine learning algorithm, Semi-Supervised Learning (SSL)

� Clinical outcomes

� Initial GBM vs. recurrent GBM

� Short-term survival vs. long-term survival
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DataData
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TCGA Data
Data

TCGA research network., (2008), Nature
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Download Multi-level Genomic Data

� Available raw and normalized different types of genomic data 

were retrieved from the TCGA data portal

� Tissue: GBM

� Size: about 230 GBs

Data

� Size: about 230 GBs

� Databasing each level of data for further analysis
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Data Description

Data type Platform Num of Samples * Num of Features

CNA Agilent Human 

Genome CGH 

Microarray 244A

278 235,829

Methylation Illumina DNA 

Methylation OMA003 

Cancer Panel 1

235 1,498

Data

* Samples with tumor type = ‘solid tumor’

Cancer Panel 1

Gene Expression Affymetrix HT Human 

Genome U133 Array 

Plate Set

262 12,043

miRNA Agilent 8x15K Human 

miRNA-specific 

microarray

266 534
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Data: Input

Expression miRNAMethylationCNA

S: 262 S:  266S: 235S: 278

F: 534F: 1,498 F:  12,043F: 235,829 

O.S. 

Data

� Select overlap samples among multi-level of genomic datasets as an 

input

S: Sample, F: Feature, O.S: Overlap Samples
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Data: Output Variable

Data

Clinical outcome Num of samples (Neg / Pos)

Disease Recurrence (yes vs. no) 159 (39 / 120)

Survival status (short-term vs. long-term) 82 (54 / 28) 

� Define classes

� Disease recurrence
• Initial GBM: Procedure_Type = ‘Surgical Resection’ & Pretreatment_History = ‘No’

• Recurrent GBM: Procedure_Type = ‘Secondary Surgery for tumor recurrence’

� Survival status
• Short-term survival: Survival < 9 months

• Long-term survival: Survival > 24 months
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MethodsMethods
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� Missing values were estimated using K-nearest neighbors with K = 15 
(Troyanskaya et al., 2001)

� Assume a M x N matrix 

� Missing entry Gi,l as the weighted average of 
neighboring genes

Data preprocessing: Missing Value Imputation
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Methods

neighboring genes
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Data preprocessing: Feature Selection

� Identify differential expressed genes from two conditions or phenotypes 

� t-test
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Graph-based Semi-Supervised Learning (SSL)

?

1

- 1

?
- 1

Patient

Association of two patient

(similarities)

Methods

� The goal of SSL is to classify unknown patient into the right class

1

?

- 1

1

- 1

?

Initial GBM 

Recurrent GBM

Unknown patient
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Graph-based Semi-Supervised Learning (SSL)

� Objective function

� Loss condition: In labeled nodes, final output should be closed to the 

SmoothnessLoss

Lffyfyf
TT

f
µ+−−= )()(min

Methods

� Loss condition: In labeled nodes, final output should be closed to the 
given label

� Smoothness condition: final output should not be too different from the 
adjacent node’s output

� L is called the graph Laplacian matrix where

� Solution
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Input for SSL: Weight Matrix (W)

� Exp-weighted K-NN graphs

� Nodes i, j are connected by an edge if i is in j’s K-nearest-neighborhood or vice 

versa

� d: Euclidean distance

)
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2
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Methods

� d: Euclidean distance

� Hyperparameter α controls the decay rate
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Model Parameter Selection

� Parameters should be selected by user when learning with SSL

� K : KNN 

� : SSL µ

Methods

� Combination of parameters

� K =  {3, 4, 5, 6, 7, 8, 9, 10, 20, 30}

� =  {0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 1.0, 10.0, 100.0, 1000.0}µ
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Experiment: Measurement (AUC)

� AUC (Area under the ROC curve)

� 5-fold cross validation

Methods
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ResultsResults
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Model Parameter Selection

Results

A
U
C

K

A
U
C

µµµµ

Survival Status: Gene expression (p < 0.001)
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Experiment Results: Recurrence

P_value < Num of 

Features

BEST AUC Avg AUC with Std K Mu

1.000 12,043 0.4095 0.3992    0.0086 15 0.010

0.100 545 0.4976 0.4842    0.0097 15 0.010

0.050 209 0.6583 0.5334    0.0405 10 1,000

0.010 17 0.6667 0.6098 0.0281 15 0.550

0.005 8 0.6369 0.5720    0.0327 30 0.650

±

±

±

±

±

Results

Gene Expression

0.005 8 0.6369 0.5720    0.0327 30 0.650±

miRNA
P_value < Num of 

Features

BEST AUC Avg AUC with Std K Mu

1.000 534 0.5083 0.4768    0.0205 20 1,000

0.100 58 0.5738 0.5120    0.0289 15 0.600

0.050 29 0.5988 0.4711    0.0345 30 1,000

0.010 5 0.7131 0.5879    0.0414 30 0.900

0.005 4 0.7107 0.5953    0.0459 9 100.0

0.001 3 0.7226 0.5900    0.0427 30 1.000±

±

±

±

±

±
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P_value < Num of 

Features

BEST AUC score Avg AUC with Std K Mu

1.000 1,498 0.6071 0.4220    0.0378 3 1,000

0.100 131 0.6774 0.5722    0.0437 30 0.400

0.050 68 0.6226 0.5454    0.0381 15 0.350

0.010 16 0.5536 0.4393    0.0405 30 0.050

0.005 10 0.5631 0.4888    0.0310 30 0.050

±

±

±

±

±

Results

Experiment Results: Recurrence

Methylation

0.005 10 0.5631 0.4888    0.0310 30 0.050±

P_value < Num of 

Features

BEST AUC score Avg AUC with Std K Mu

1.000 235,829 0.4345 0.4231    0.0046 3 0.001

0.100 16,045 0.4631 0.4376    0.0099 3 0.001

0.050 5,824 0.6119 0.5845    0.0244 7 0.001

0.010 495 0.7488 0.7051    0.0197 10 1,000

0.005 192 0.7500 0.6895    0.0396 3 0.900

0.001 23 0.8131 0.7498    0.0241 30 0.300±

±

±

±

±

±

CNA
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Best AUC Comparison

Outcome Data type AUC

Recurrence CNA 0.8131

Methylation 0.6774

Gene Expression 0.6667

miRNA 0.7226

Survival 

Status

CNA 0.8160

Results

Status
Methylation 0.7480

Gene Expression 0.8560

miRNA 0.7480

� Recurrence: CNA data showed the best performance (AUC: 0.8131)

� Survival status: Gene expression data showed the best performance (AUC: 0.8560)
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AUC Changes after Feature Selection

Results

Recurrence

� Increasing tendency of AUC through feature selection 
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ConclusionConclusion
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Biological Implication

� Disease recurrence in GBM
� CNA data showed the best performance among multi-level of genomic data 

sets

� These findings suggest that tumor progression from initial to recurrent 
tumor has high probability to be associated with an increase of genetic 
changes

� Therefore, recurrences in GBM are more advanced than initial GBM

Conclusion

� An increasing amount of DNA copy number alterations is a dominant 
feature between initial and recurrent GBM

� Survival status in GBM
� Even though CNA data showed good performance, gene expression data 

was the most dominant feature in survival status

� These findings suggest that functional level is relatively better than 
structural level to distinguish between short-term and long-term survival in 
GBM
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Biological Implication

� Why did CNA data show the best performance in disease 
recurrence in GBM? 

� Why did gene expression show the best performance in 
survival status in GBM? 

Conclusion

� We could get these meaningful questions from our 
approach for further study
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Importance of Feature Selection

� Molecular biology data from high-throughput technologies
� High-dimension

� Noisy

� Missing value

� These factors listed above affect performance 

� Importance of feature selection in bioinformatics is getting increased

Conclusion

� AUCs were increased dramatically through feature selection 
using simple t-test 
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Conclusion

� Classification of clinical outcomes in GBM was performed as a base 
task in order to provide a preliminary insight on the question:
� Which genomic data is more informative when multiple genomic dataset are 

available

� Specific genomic data with high performance could be solely used in 
classification tasks where other genomic dataset are unavailable 

Conclusion

classification tasks where other genomic dataset are unavailable 
� Due to the high cost associated with the experimental procedure and sample 

availability

� However, data integration with multi-level of  genomic data is needed 
to better explain phenotype 
� Different genomic data contain partly independent and partly complementary 

pieces of information
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Multi-level Genomic Data Integration

� Multiple graphs from heterogeneous genomic data can be 
combined 
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Multi-level Genomic Data Integration

Future works
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Integration of Multi-level Genomic Data: 

Recurrence

C: CNA

M: Methylation

E: Expression

R: miRNA

Future works
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Integration of Multi-level Genomic Data: 

Survival Status

C: CNA

M: Methylation

E: Expression

R: miRNA

Future works
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The Second phase of TCGA Project

Future works
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