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Abstract 
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Gene expression profiling has been used to molecularly characterize various tumors and tissues. 

However, regulation of gene expression by microRNAs (miRNAs) has attracted much attention 

recently. MicroRNAs are regulators of gene expression, mainly functioning by decreasing mRNA 

levels of their multiple targets. Normally, intra-relations from gene expression or miRNA data can be 

constructed for explaining cancer phenotype. However, intra-relations are not fully elucidating 

complex cancer mechanism because the information that miRNAs and target genes are strongly 

associated with different biological processes is missing. As the recent studies for target prediction of 

miRNAs are getting increased, the inter-relation between miRNA and gene expression can be 

constructed from biological experimental data and genomic knowledge. In this study, we propose an 

integrated framework that combines genomic dataset from gene expression and genomic knowledge 

from inter-relation between miRNA and gene expression for the molecular-based classification of 

clinical outcomes. According to our results, accuracy of prediction model increases because of 

incorporation of information fused over genomic dataset (gene expression) and genomic knowledge 

(target relation between miRNA and gene expression). This suggests that gene expression regulation 

through mechanisms that involve miRNAs has valid knowledge for elucidating the cancer phenotype. 
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Abstract (Summary) 
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Normally, intra-relations from gene expression or miRNA data can be constructed for 

explaining cancer phenotype 

 

 

However, intra-relations are not fully elucidating complex cancer mechanism because 

the information that miRNAs and target genes are strongly associated with different 

biological processes is missing 

 

 

In this study, we propose an integrated framework that combines genomic dataset from 

gene expression and genomic knowledge from inter-relation between miRNA and gene 

expression for the molecular-based classification of clinical outcomes 
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Introduction 
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• Gene expression profiling has been used to molecularly characterize various 

tumors and tissues 

 

 

• However, regulation of gene expression by microRNAs (miRNAs) has 

attracted much attention recently 

 

 

• miRNAs regulate many genes associated with different biological processes 

such as development, stress response, apoptosis, proliferation, and 

tumourigenesis 

 

 

Introduction 



Regulation mechanism of miRNA and target genes 
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Introduction 

• miRNAs are involved in the post-transcriptional regulation of genes either by 

mRNA cleavage and degradation or by repressing the translation of mRNA 

into protein 

 

 

 
miRNA mRNA 

miRNA 

miRNA 

mRNA 

mRNA 

Non-target gene 

Target  gene 

X 
mRNA cleavage 

mRNA cleavage 



Motivation 
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miRNA 

Gene expression 

miRNA – Target gene 

• Intra-relation: the relation between entities on a 

specific biological level 

 

 

• Inter-relation: the relation between different levels 

 

 

• Normally, intra-relations from gene expression or 

miRNA data can be constructed for explaining cancer 

phenotype 

 

 

• However, intra-relations are not fully elucidating 

complex cancer mechanism because the information 

that miRNAs and target genes are strongly associated 

with different biological processes is missing 

 

 

Introduction 



Purpose of the study 
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• How informative is inter-relationship between miRNA and gene expression for 

cancer clinical outcome prediction? 

 

 

• Propose an integrated framework that combines genomic dataset from gene 

expression and genomic knowledge from inter-relation between miRNA and 

gene expression for the molecular-based classification of clinical outcomes 
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Data 



TCGA: Connecting multiple sources,  

experiments, and data types 

  

 
 

 
Clinical Data 

Multi-layers of genomic Data 
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Data 



Glioblastoma Multiforme (GBM) 

 Most common and aggressive primary brain tumor in adults  

 

 Median survival of one year 

 

 One of the hallmarks of GBM is its inherent tendency to recur 
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Data 



Data description 
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Data 

Clinical outcome Num of samples (Neg / Pos) 

Survival status (short-term vs. long-term) 82 (54 / 28)  

Data type Platform Num of Features 

Gene Expression Affymetrix HT Human 

Genome U133 Array Plate 

Set 

12,043 

miRNA Agilent Human miRNA 

Microarray Rel12.0 

799 



miRNA – target gene relation 
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• In order to get target information between miRNA and mRNA 

 

• Used miRecords which is integrated resources of miRNA that store target 

interactions produced by 11 established miRNA target prediction 

program 

 

 

• Among 11 algorithms, a binary relation between miRNA and mRNA was set 

when more than 3 algorithms provide the target relation 

 

 

Data 

Xiao et al., 2009 
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Methods 



Approaches 
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• GO: Original graph from gene expression 

 

 

• GD50: Gene expression graph with 50% damages 

 

 

• GR: Reconstructed graph via inter-relationship between miRNA and gene 

expression 

 

 

• GA: Augmented graph by 50% damaged graph and reconstructed graph 

 

Methods 
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Methods 

GO: Original graph from gene expression 

 

Gene expression (GO) 
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Methods 

GD50: Gene expression graph with 50% damages 

 

Gene expression (GD50) 

X 

X 
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Methods 

GR: Reconstructed graph via inter-relationship between 

miRNA and gene expression 

Gene expression (GR) 

Inter-relationship 

miRNA 
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Methods 

GA: Augmented graph by 50% damaged graph and 

reconstructed graph 

 

X 

X 

X 
+ = 

GD50 GR GA 
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   

Methods 



Expected Results 
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AUC 

Percent of damaged edges 

10% 20% 30% 40% 50% 

GA 
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Methods 



Prediction based on intra-relation from mRNAs 
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Patient  
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Methods 

• Graph-based semi-supervised learning (SSL) 

 

 



Graph-based Semi-Supervised Learning (SSL) 

 Objective function 

 
 

 

 

 

 

 Loss condition: In labeled nodes, final output should be closed to the 
given label 

 

 Smoothness condition: final output should not be too different from the 
adjacent node’s output 

 

 L is called the graph Laplacian matrix where 

 

 

 

 Solution 

 
 

 

Smoothness Loss 
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Methods 

Shin et al., 2007 Tsuda et al., 2005 



Input for SSL: Weight Matrix (W) 

 

 
 

 

 Exp-weighted K-NN graphs 

 

 

 

 Nodes i, j are connected by an edge if i is in j’s K-nearest-neighborhood or vice 

versa 

 d: Euclidean distance 

 Hyperparameter α controls the decay rate 
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Methods 



Data Description 
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Prediction based on inter-relation from miRNA to mRNA 
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Methods 

Inter-relationship weight matrix 



Integration of multiple networks 

 Two graphs can be integrated from finding optimum 
combination coefficients 
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Methods 

Tsuda et al., 2005 



Experiment setting 

• GO: Original graph from gene expression 

 

• GD: Gene expression graph with damages (10% ~ 90%) 

 

• GR: Reconstructed graph via inter-relationship between miRNA and gene 

expression 

 

• GA: Augmented graph by damaged graph and reconstructed graph 

 

• Performance measure: AUC (Area under the ROC curve) 
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Experiment Setting 



Model Parameter Selection 

 Parameters should be selected by user when learning with SSL 

 
 K : KNN  

 

     : SSL  

 

 

 Combination of parameters 

 
 K  =  {3, 4, 5, 6, 7, 8, 9, 10, 20, 30} 

 

     =  {0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.7, 1.0, 10.0, 100.0, 1000.0} 

 
 

 





Experiment Setting 
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Results 



Result comparison 
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GD 

GR GA 

GO 

Results 



Significance test of the performance differences 
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Results 

Percent of 

damaged edges 

AUC of GD AUD of GA P-value 

10% 0.812 0.820 1.87e-02 

30% 0.803 0.816 2.09e-03 

50% 0.788 0.804 3.43e-05 

70% 0.756 0.784 9.59e-08 

90% 0.680 0.776 1.24e-13 



Improving performance from augmented knowledge based 

on inter-relation between miRNA and miRNA 
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Conclusion 



Discussion & Conclusion 
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• Proposed an integrated framework that combines genomic dataset and 

genomic knowledge 

• In order to provide a preliminary insight on the question that is how 

informative is inter-relationship between and gene expression 

 

 

• Inter-relation from miRNA and target gene could help constructing intra-

relation from gene expression for better cancer clinical outcome prediction 

 

 

• Our results suggests that genomic knowledge is complementary to the 

prediction power of explaining cancer phenotype 

• Even though genomic data such as gene expression has incomplete 

information 

 

 

Conclusion 



Future work 
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• Gene expression regulation through mechanisms that involve miRNAs is valid 

knowledge for elucidating the cancer phenotype 

• Because miRNAs regulate many genes associated with different 

biological processes 

 

 

• Reconstructing intra-relation from miRNA 

 

 

• Combining gene expression, miRNA, and inter-relation 

 

 

 

 

 

 

Conclusion 



The Second phase of TCGA Project 
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Conclusion 



Any Question?  
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