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Abstract. In bioinformatics, there exist multiple descriptions of graphs
for the same set of genes or proteins. For instance of yeast proteins, edges
can stand for different kind of relation such as protein-protein interac-
tions, or genetic interactions, or co-participation in a protein complex,
etc. Each graph can solely be used for prediction of the proteins unclas-
sified yet, relying on similarities between nodes. However since different
graphs contain partly independent and partly complementary pieces of
information about the problem at hand, one thus can enhance the total
information about the problem by combining those graphs. In this paper,
we propose a method for integrating multiple graphs within a framework
of semi-supervised learning. The method alternates minimizing the ob-
jective function with respect to network output and with respect to com-
bining weight. We demonstrate the method to the task of functional class
prediction of yeast proteins. The proposed method performs significantly
better than the same algorithm trained on any single graph.

1 Introduction

In bioinformatics, it is common that many types of genomic data can be repre-
sented using graphs of which nodes correspond to genes or proteins, and of which
edges correspond to different kind of relationships such as physical interactions
of the proteins (Schwikowski et al., 2000; Uetz et al., 2000; von Mering et al.,
2002), gene regulatory relationships (Lee et al., 2002; Ihmels et al., 2002; Segal
et al., 2003), and similarities between protein sequences (Yona et al., 1999), etc.
One of the applications using graph representation is to predict protein func-
tional class. It can be described as a binary-class classification problem on an
undirected graph. Fig.1 illustrates the problem. A protein already known its class
is labeled either by ‘+1’ or ‘−1’ while a protein yet unknown its class is marked
as ‘?’. The goal is to predict the label of unlabeled protein relying on similarities
between nodes. Prediction of protein functional class has been studied by means
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of various methods such as diffusion kernel (Tsuda & Noble, 2004a), majority
vote (Hishigaki et al., 2001; Schwikowski et al., 2000), graph-based (Vazquez et
al., 2003), Bayesian (Deng et al., 2003), and discriminative learning methods
(Vert & Kanehisa, 2002; Lanckriet et al., 2004a).

Fig. 1. The functional class prediction on a protein network graph. A protein already
known its class is labeled either by +1 or −1. The task is to predict labels of unlabeled
proteins marked as ‘?’.

Meanwhile, there can exist multiple descriptions of graphs for the same set of
genes or proteins. For instance, nodes of yeast proteins can be connected in many
different ways based on heterogeneous information such as protein-protein inter-
actions, or genetic interactions, or co-participation in a protein complex, etc. Dif-
ferent graph sources are likely to contain partly independent and partly comple-
mentary pieces of information about the problem at hand. Thus, one can enhance
the total information about the problem by combining those graphs. Recently,
there have arisen several methods for integrating heterogeneous data sources in
bioinformatics. Most of them are based on kernel methods thanks to up-to-date
advances of theory and performance. These methods commonly represent data
by means of kernel matrix which defines similarities between pairs of genes or
proteins. They then propose a method of their own on how to combine those ker-
nel matrices. Lanckriet et al. (2004c) exploits semi-definite programming (SDP,
see also Lanckriet et al. (2004b)) techniques to reduce the problem of finding op-
timizing kernel combinations to a convex optimization problem. This SDP-based
approach yields a satisfactory result when performed on genome-wide data sets,
including amino acid sequences, hydropathy profiles, gene expression data and
known protein-protein interactions. On the other hand, Kato et al. (2004) dif-
ferentiate the worth of data sources such as ‘expensive’ data–informative but
difficult to obtain, and ‘cheap’ data–less informative but abundantly available.
Since the kernel matrix derived from the expensive data often has missing en-
tries, they attempt to complete them using multiple cheap data. They use an
EM (expectation-maximization) algorithm so as to simultaneously optimize the
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combining weights of data sources and the missing entries of the incomplete ker-
nel matrix (for the methodology about kernel matrix completion, refer to Tsuda
et al. (2004b)). This EM-based method shows promising results when tested on
supervised protein network inference and protein superfamily classification. The
problem as to multiple data sources (not only limited to graph representation)
is often described as so-called “data fusion,” which is intensely dealt with in the
chapter 11, 12, and 13 in the recent book of (Schölkopf, Tsuda, & Vert, 2004).
Another methods related to integration of data sources can be found (Lanckriet
et al., 2004a; Pavlidis et al., 2001; Vert & Kanehisa, 2002).

In the meantime, when data is represented as a graph, and further labeling
the nodes unlabeled highly costs but their input can be incorporated in training
classifier, a more direct state-of-the-art of learning method is semi-supervised
learning. In semi-supervised learning, the labeled nodes provide information
about the decision function, while the unlabeled nodes aid to reveal the struc-
ture of the data or data manifold by providing additional information (Chapelle
et al., 2003b; Zhou et al., 2004a; Seeger, 2000). We will enter into detail about
semi-supervised learning in the next section. However, when we encounter the
problem on utilization of multiple data sources there has not been yet a research
that can deal with the case in semi-supervised learning. In this paper, we propose
a method for integrating multiple graphs within a framework of semi-supervised
learning. The method alternates minimizing the objective function with respect
to network output and with respect to combining weight. We demonstrate the
method to the task of functional class prediction of yeast proteins provided by the
MIPS Comprehensive Yeast Genome Database (CYGD-mips.gsf.de/proj/yeast).
The proposed method performs significantly better than the same algorithm
trained on any single graph.

The remaining of this paper is organized as follows. In section 2, we briefly
introduce semi-supervised learning and the recent work. Section 3 gives a detailed
explanation of our proposed method. In section 4, we show experimental results.
We conclude in section 5.

2 Semi-Supervised Learning

Let G = (V,E) denote a weighted graph where V = {x1,x2, ..., xn} is the ver-
tex set and E is the edge set. And W is denoted as a weight matrix associated
with E, which represents the magnitude of strength of linkage. W could be
simply regarded as a non-negative similarity (or an affinity) matrix. The more
similar xi to xj , the larger a value of wij . Now suppose that p vertices of V
are labeled (x1, y1), (x2, y2), . . . , (xp, yp) where yi ∈ {−1, 1}, and the remaining
q vertices xp+1, xp+2, . . . , xp+q=n are unlabeled. And accordingly, let us define
P = {1, 2, . . . , p} for the former and Q = {p + 1, p + 2, . . . , n} for the latter. The
goal of semi-supervised learning is to label those unlabeled vertices by exploiting
the structure of the graph under the assumption that a label of an unlabeled
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vertex is more likely to be that of more adjacent or more strongly connected
vertex to it.

To formulate the idea, let us define a function f : V → < on G that estimates
labels with this property. Then, (a) a label fi or f(xi) estimated from f should
not be too much different from fj ’s of adjacent vertices (b) under the constraints
fi ≡ yi, i = 1, ..., p. One can obtain f by minimizing the following quadratic
function

∑

i∼j

wij(fi − fj)2 + µ
∑

(fi − yi)2, (1)

where i ∼ j means xi and xj are adjacent. The first term implies the “smooth-
ness” of (a) and the second term corresponds to the “loss function” of (b). Al-
ternative functions of smoothness or loss can be found in Chapelle et al. (2003a).
For technical convenience, a condition

∑
fi = 0 can be added to Eq.(1). Refer

to Belkin & Niyogi (2003a) and Belkin et al. (2003b). Very often, the quadratic
problem of Eq.(1) is represented in terms of matrix,

min
f

fT Lf + µ (f − y)T (f − y), (2)

where y = [ yT
P yT

Q ]T , yp ∈ {−1, 1}, yq ∈ {0}, p ∈ P, q ∈ Q, and f =
[ fT

P fT
Q ]T , f ∈ <. µ is a parameter that trades off loss versus smoothness.

The Laplacian is defined as L = D − W where D = diag(di), di =
∑

j wij .
Instead of L, ‘normalized Laplacian’, L̃ = D− 1

2 LD
1
2 can be used which has

many nice properties (Chung, 1997). The solution to the quadratic problem can
be obtained in a form

f = µ {L + µ I}−1
y

where I is an identity matrix.

There have been various semi-supervised learning algorithms, such as spectral
methods and clustering (Belkin & Niyogi, 2004; Chapelle et al., 2003a; Joachims,
2003; Ng et al., 2001; Seeger, 2000), graph s-t mincuts (Blum & Chawla, 2001)
or multi-way cuts (Kleinberg and Tardos, 1999), Co-Training (Blum & Mitchell,
1998), random walks (Szummer & Jaakkola, 2001; Zhou & Schölkopf, 2004b;
Zhu et al., 2003), diffusion kernels (Kandola et al., 2002; Kondor and Lafferty,
2002; Smola & Kondor, 2003). And see also ‘transductive SVM’ introduced by
Vapnik (1998) which were later refined by Bennett (1999) and Joachims (1999).

3 Method of Combining Graphs

Given a single graph G, we can predict f q with Eq.(2) after transforming G into
a Laplacian L or a normalized Laplacian L̃ . Now, consider the case that a set
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Fig. 2. Multiple graphs: consider the case that a set of graphs G = {G1, G2, . . . , Gk}
is given, and each of which tells different aspect of the data. Each graph can solely
predict the label of the unlabeled nodes marked as ‘?’, depending on its own similarity
measure between nodes. However, since different graphs contain partly independent
and partly complementary pieces of information about the problem at hand, one thus
can enhance the total information about the problem by combining those graphs.

of graphs G = {G1, G2, . . . , Gk} is given, and each of which tells different aspect
of the data (see Fig.2). We can simply formulate k quadratic problems in the
form of Eq.(2), and then can obtain k independent outputs fk, k = 1, . . . , K.
However, if f i 6= f j , i 6= j, how can we deal with such a disagreement among
the outputs? One way to circumvent the situation is to put them all into one
objective function, and solve it simultaneously. We can consider parameterized
combinations of the graphs. In particular, we can form the linear combination
of Laplacians

L =
K∑

k=1

βkLk, (3)

where the weight βk is constrained to be positive to assure that each Laplacian
contributes to prediction of f . By plugging Eq.(3) into Eq.(2), we obtain

min
β, f

K∑

k=1

βkfT Lkf + µ (f − y)T (f − y),

s.t. β ≥ 0, (4)

where β = [β1 β2 . . . βk]T . The solution of Eq.(4) is, however, trivial when
β = 0. Although except the case, the weight vector β is prone to be a sparse
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vector having one or two non-zero elements. For example, β = [0 0 . . . δ 0]T

could be the case. In order to prevent the cases aforementioned, we introduce a
‘barrier function’ (see Bazaraa et al. (1993)) to Eq.(4),

min
β, f

R(β, f) =
K∑

k=1

βkfT Lkf − log det(I −
K∑

k=1

βkLk) + µ (f − y)T C(f − y),

s.t. β ≥ 0, βT 1 = δ, (5)

where 1 = [1 1 . . . 1]T and δ < 0.5. The second term plays the role of barrier
which spreads a non-zero value on every element of β. The constraint βT 1 = δ
is added for the sake of technical stability (see chap. 1 of Chung (1997)). One
can substitute a simpler function such as ‘−∑

k log βk’ for the current barrier
without the extra constraint βT 1 = δ. In the third term corresponding to loss
function, a diagonal cost matrix C is incorporated so that allows different mis-
classification cost, i.e., c1 for yi = +1, and c2 for yj = −1, i, j ∈ P .

Eq.(5) has nice properties: fixing β the objective function is convex with re-
spect to f , while fixing f it is also convex with respect to β. Now, we can jointly
minimize the objective function on β, and on z as well. We bisect the solving
process like ‘E-step’ and ‘M-step’ of EM algorithm, and optimize both steps
in alternate (Dempster et al. (1977); McLachlan & Krishnan (1997)). However,
on account of lack of justice yet, we here denote them as ‘β-step’ and ‘f -step’
instead. The algorithm is presented in Fig.3 followed by the solution of each step.

(1) Initialize �i (i = 0) with random value under the constraints
(�i)T 1 = δ.

(2) [f -step] Given �i, find f i by minimizing R(�,f) with
respect to f .

(3) [�-step] Given f i, find �i+1 by minimizing R(�,f) with
respect to �.

(4) Return f i and �i if
���R(�i+1, fi+1)−R(�i, fi)

R(�i, fi)

��� < ε,

i = i + 1 and go to (3) otherwise.

Fig. 3. Algorithm: By alternating ‘�-step’ and ‘f -step’, the optimal solution of the
combining weights and the output can be found simultaneously.
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Solution of [f-step] When β is fixed, the solution f can be obtained by

∂R(β, f)
∂f

∣∣∣
(β=βi)

=

{
K∑

k=1

βkLk + µ C

}
f − µ C y = 0

where C is a (n× n) diagonal cost matrix. And standard linear algebra leads to
the solution in the form of

f = µ C

{
K∑

k=1

βkLk + µ C

}−1

y (6)

Solution of [β-step] To find the solution of β when given f , we use the
gradient descent method for minimizing R(β, f) with respect to β. The current
βi is updated to βi+1 as follows:

βi+1 = βi − αiPdβi (7)

where dβi is the gradient vector,

dβi =
∂R(β, f)

∂β

∣∣∣
(f=f i, β=βi)

whose kth element is

∂R(β, f)
∂βk

∣∣∣
(f=f i, β=βi)

= fT Lkf + tr
[
(I −

K∑

j=1

βjLj)−1Lk

]
. (8)

In Eq.(8), tr
[
(I −

K∑
j=1

βjLj)−1Lk

]
is the derivative of ∂

∂βk

(
log det(I −

K∑
k

βkLk)
)

given by the following algebra. Let A be a matrix of which element is parame-
terized with respect to t. The derivative of ∂

∂t

(
log det A

)
can be drawn by

∂
∂t

(
log detA

)
=

∑

i,j

∂

∂Aij

(
log det A

)
× ∂Aij

∂t
(9)

=
∑

i,j

A−1
ij

∂Aij

∂t

where
∑
i,j

∂
∂Aij

(
log det A

)
= ∂

∂A

(
log detA

)
= A−1. And if A and B are sym-

metric, then
∑
i,j

AijBij = tr
[
AB

]
. Thus Eq.(9) becomes

∑

i,j

A−1
ij

∂Aij

∂t
= tr

[
A−1 ∂A

∂t

]
.
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By replacing A and t with (I−
K∑

k=1

βkLk) and βk, respectively, we get the deriva-

tive

∂

∂βk

(
log det(I −

K∑

k=1

βkLk)
)

= tr
[
(I −

K∑

j=1

βjLj)−1(−Lk)
]
.

Going back to Eq.(7), there is P , the projection matrix, defined as

P = I − 1
K

11T (10)

where 1 = [11 . . . 1]T . The matrix P enables the next solution of βi to satisfy
the constraint βT 1 = δ such as

(βi+1)T 1 = (βi +∇)T 1 = δ

where ∇ = −dβi. Since (βi)T 1 = δ, ∇ should be content with

1T∇ = 0 (11)

which implies ∇ has to be projected onto an orthogonal space to 1T . A general
formula of orthogonal projection to A when A∇ = 0 is

P = I −AT (AAT )−1A.

Eq.(10) results from specifying A with 1T in the formula. With preconditioning
of ∇ with P , we now can assure Eq.(11),

1T (P∇) = 1T (I − 1(1T 1)−11T )∇ = 0.

The αi in Eq.(7) determines the learning rate during the update. We begin with
αi set to the maximum value under the condition βi+1

k ≥ 0, ∀k, and gradually
reduce the magnitude as the iteration increases.
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4 Experiments

4.1 Experimental Design

The task is to determine functional classes of yeast proteins. We used as a gold
standard the functional catalogue provided by the MIPS Comprehensive Yeast
Genome Database (CYGD-mips.gsf.de/proj/yeast). The top-level categories in
the functional hierarchy produce 13 classes (see table 1). A protein can belong
to several functional classes. In a total of 6355 yeast proteins, however, only
3588 have class labels. The remaining yeast proteins have uncertain function
and are therefore not used in evaluation. We dealt with the prediction problem
as ‘one class-versus-all others’ classification tasks, one for each functional class.
See Lanckriet et al. (2004b) for more detail.

Table 1. 13 CYGD functional Classes

Classes Size

1 metabolism 1048
2 energy 242
3 cell cycle and DNA processing 600
4 transcription 753
5 protein synthesis 335
6 protein fate 578
7 cellular transportation and transportation mechanism 479
8 cell rescue, defense and virulence 264
9 interaction with cell environment 193

10 cell fate 411
11 control of cell organization 192
12 transport facilitation 306
13 others 81

The input is four different types of protein interaction graphs with proteins
as nodes and interactions as edges. The graphs are represented as mostly binary
matrices having non-zero entry if there is interaction between the row and column
proteins, 0 otherwise. The followings are the input matrices:

W1 : protein-protein interactions (MIPS physical interactions),
W2 : genetic interactions (MIPS genetic interactions),
W3 : co-participation in a protein complex (determined by tandem affinity pu-

rification, TAP), each entry is a count of the number of times two proteins
appear together in a complex,

W4 : co-participation in a protein complex, each entry is non-zero if and only if
there is a bait-prey relationship.

There are proteins which show no interactions with others. For instance, W2

of Fig.4 has 2769 (=1529+1240) zero entries, thus only 819 (=3588-2769) are
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available for semi-supervised learning. And no results for 2769 proteins remain-
ing. This situation similarly arises in other graphs when they are considered
individually. On the contrary, in a combined graph, more proteins can be used
if it has at least one non-zero interaction from any graph. It amounts to the
size of union of all non-zero entries in all graphs. In the problem in hand, 1529
of 3588 proteins have no interactions in any of the graphs. Consequently, 2059
(=3588-1529) proteins are preserved for learning, and hence leads to less infor-
mation loss and more results. For non-zero entries, to combine graphs can also
be of more advantage particularly when the outputs of individual graphs cannot
reach an accord with each other.

Fig. 4. The number of proteins available to learning.

All the matrices Wk (k = 1, ..., 4) were transformed to ‘normalized’ Laplacian
Lk’s with dimension of 1042, 819, 1079 and 1051, respectively. For individual
Laplacians composing the combined graph, zero columns and rows were inserted
up to 2059 after transformation. Hereafter, we indicate each graph with Lk

(k = 1, ..., 4) and the combined graph with Lcom. The performance of Lcom was
compared with those of individual Lk’s with the receiver operating characteristic
(ROC) score, TP1FP, TP10FP, and error rate. ROC score is the area under ROC
curve (see Fig.5) that plots true positive rate (sensitivity) as a function of false
positive rate (1-specificity) for differing classification thresholds (Gribskov &
Robinson, 1996; Hanley & McNeil, 1982). It measures the overall quality of the
ranking induced by the classifier, rather than the quality of a single value of
threshold in that ranking. An ROC score of 0.5 corresponds to random guessing,
and an ROC score of 1.0 implies that the algorithm succeeded in putting all
of the positive examples before all of the negatives. TP1FP is the rate of true
positives at the point that yields 1% false positive rate on the ROC curve, and
similarly, so is TP10FP. Error rate is a conventional performance measurement
with a fixed value of threshold. Five-fold cross-validation (CV) was conducted
for every class, and repeated five times in order to estimate the variance of the
measurement values.
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4.2 Results

A typical ROC curve, i.e. from the experiment of functional protein class 3, is
shown in Fig.5. The closer the curve follows the left-hand border and then the top
border of the ROC space, the more accurate the classifier. The figure therefore
illustrates that Lcom is more accurate than any other single Lk. Fig.6 presents

Fig. 5. ROC curve: Protein functional class 3. The closer the curve follows the left-hand
border and then the top border of the ROC space, the more accurate the classifier.

the average ROC score of each class on its test set when performing five-fold
CV five times. The height of the stem indicates to the ROC score. Within each
group of stems, a thinner stem corresponds to an individual graph in due order,
such as L1, L2, L3, and L4, respectively while a thicker one to Lcom. Across
the 13 classes, the combined graph Lcom outperformed a single one. In overall,
Lcom yielded an ROC score of 0.8313 that surpasses all those of individual Lk’s,
0.7777, 0.7836, 0.7310, and 0.7238, respectively. See Fig. 7(a). The performances
of TP1FP and TP10FP are depicted in Fig.7(b) and Fig.7(c). Among TP1FP’s
of Lk’s, 26.87% of L2 is the most comparable to 30.07% of Lcom. But the gap
between the best and the second best becomes larger in TP10FP by 70.15% of
Lcom and 61.22% of L2. In Fig.7(d), the proportion of the colored bars indicates
the relative weights of the different graphs when combined. Fig. 9 presents the
error rates of 13 classes. A dot stands for the error rate of Lk, and the num-
ber beside it identifies the individual such as k = 1, ..., 4. The error rate of the
combined graph is depicted as a square. The performance of Lk differs ‘class by
class’, and the variation of the difference between the best and the worst, which
is represented as a line, changes significantly as well. Therefore, it is hard to put
them in the order of which is superior to the other, accordingly we are hardly
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Fig. 6. ROC score for 13 functional protein classes: The height of the stem indicates
to the ROC score. Within each group of stems, a thinner stem corresponds to an
individual graph in due order, such as L1, L2, L3, and L4, respectively while a thicker
one to Lcom. Across the 13 classes, the combined graph Lcom outperformed a single
one.

able to pick one out of them. Moreover, since the variation is also large a wrong
choice of graph may lead to the worst performance. On the other hand, the er-
ror rate of the combined graph is always lower than any of those of individual
graphs. In addition, one does not need to take the risk involved in the choice of
graphs.

To test the significance of the difference between the combined graph and
the individual one, McNemar’s test was conducted (Dietterich, 1998). In princi-
ple, McNemar’s test is to determine whether one learning algorithm outperforms
another on a particular learning task. This non-parametric test could be seen
as a Sign-Test in disguise. Fig.9 shows p-value distribution of McNemar’s test.
The smaller p-value indicates the better the combined graph is than an indi-
vidual graph, while a p-value of 1 means no statistical difference between them.
For most of 1300 experiments the combined graph outperforms the individual
graphs. And in 504 out of 1300 McNemar’s tests, there is a statistically signifi-
cant difference between them (significance level α=0.05).

To do the comparison justice, we have only taken into consideration the pro-
teins which are available to learning both for an individual graph and for the
combined graph. For instance, when we compared Lcom with Lk, we reported
performance only on 1342 proteins. See Fig.4. However, in the combined graph,
we are still able to obtain the results of the rest 717 proteins – that is to say,
the results of the proteins which are not available in an individual graph but
available in the combined graph. Table 2 shows both error rates of the combined
graph, ‘Error A’ for the former and ‘Error B’ for the latter. Error B is slightly
larger than Error A, since it contains the proteins of which output is produced
with a less number of input graphs. Nonetheless, it is still a reasonable figure as
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(a) ROC score

(b) TP1FP

(c) TP10FP

(d) Weight

Fig. 7. Overall performance: (a), (b), and (c) corresponds to ROC score, TP1FP and
TP10FP, respectively. The height of bars indicates the average value of the measure-
ments on five-fold CV repeated five times across 13 classes, and the error bar indicates
the standard error. Seeing the results of (a), (b), and (c), the combined graph yields
a better performance. In (d), the proportion of the colored bars indicates the relative
weights of the different graphs when combined.
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Fig. 8. Error rate for 13 functional protein classes: A dot stands for the error rate of
Lk, and the number beside it identifies the individual, k = 1, ..., 4. And the variation
of the difference between the best and the worst is represented as a line. The error rate
of the combined graph is depicted as a square. The performance of Lk differs ‘class
by class’, and the variation changes significantly as well. On the other hand, the error
rate of the combined graph is always lower than any of those of individual graphs.
Moreover, one does not need to take the risk involved in the choice of graphs that may
lead to the worst performance in some cases (classes).

Fig. 9. p-value distribution of McNemar’s test: The smaller p-value indicates the better
the combined graph is than a single one, while a p-value of 1 means no statistical dif-
ference between them. For most of 1300 experiments the combined graph outperforms
the individual graphs. And in 504 out of 1300 McNemar’s tests, there is a statistically
significant difference between them (significance level α=0.05).
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an error rate, and at least better than nothing gained.

Table 2. Error rates of the combined graph: ‘Error A’ is an error rate for the proteins
which are available to learning both for an individual graph and for the combined
graph. On the contrary, ‘Error B’ contains more proteins which are not available in
an individual graph but available in the combined graph. Although Error B is slightly
larger than Error A, because of relative lack of input information, it is nonetheless still
a reasonable figure as an error rate.

Functional Protein Classes
(%)

1 2 3 4 5 6 7 8 9 10 11 12 13 Avg.

Error A 16.32 8.23 17.08 11.39 7.92 14.42 8.29 11.11 6.65 14.98 20.18 6.70 8.49 11.67

Error B 20.39 9.98 19.46 19.71 12.99 17.52 12.85 14.26 10.71 18.19 21.12 7.29 11.24 15.05

5 Conclusion

In this paper, we have presented a novel method for combining multiple graphs
within a framework of semi-supervised learning. Similarly to EM algorithm, the
method alternates minimizing the objective function with respect to network
output and with respect to combining weight. When demonstrated to the task
of functional class prediction of yeast proteins, the proposed method performed
significantly better than the same algorithm trained on any single graph. The
proposed method can be used as the alternative of model selection process. Given
a single data source, it is likely to be represented in various ways by means
of different parameters, i.e., different similarity measures, leading to different
performances. Thus, instead of tedious process choosing one out of the candi-
date parameters, we can just combine them. From the pilot testing on standard
data sets–Breast Cancer and Pima Indian Diabetes (from UCI Repository), we
could obtain promising results. Although the method shows good performance,
it has not yet compared with the other similar approach such as Lanckriet et al.
(2004a). Therefore, investigating the merits and the demerits against the other
will be the up-coming research.
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